# A $75^{\circ}$ Angle Constraint for Plane Minimal T1 Trees

T. COLE

Department of Electronic and Electrical Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152, Japan

Received April 5, 1996; Revised January 11, 1999; Accepted January 18, 1999

**Abstract.** In this paper it is shown that the minimum angle between any 2 edges of an Euclidean plane minimal T1 tree, or 3-size Steiner tree, is at least  $75^{\circ}$ .

Keywords: Steiner minimal tree, T1 tree, Q-component

#### Introduction

Let  $X_n = \{x_1, x_2, ..., x_n\}$  denote a finite collection of *n* Euclidean plane (regular points). A Steiner minimal tree SMT is a shortest length network interconnecting  $X_n$  where (1) all angles between edges are at least  $120^\circ$  and (2) there may be extra points, called Steiner points. It is called full if there are exactly n - 2 Steiner points and all edges meet at exactly  $120^\circ$ . The underlying graph of a Steiner tree is called the topology. A T1 tree, or 3-size Steiner tree (Du et al., 1991), interconnecting  $X_n$  consists of spanning edges and minimal Steiner trees that interconnect 3 regular points, called *Q*-components.

A minimal (shortest length) T1 tree may contain edges meeting at angles less than  $120^{\circ}$  and it is conjectured that  $L_{\text{SMT}}/L_{\text{T1}} \ge 0.93185...$  where  $L_{\text{SMT}}$  is the length of a Steiner minimal tree and  $L_{\text{T1}}$  is the length of a minimal T1 tree. The value 0.93185... may be obtained from 4 points lying as the corners of a square. In this paper it is shown that the angle between any 2 edges of a minimal T1 tree must be least 75°.

#### The variational approach

For a full discussion see Rubinstein and Thomas (1991). Let  $X_n = \{x_1, x_2, ..., x_n\}$  be *n* Euclidean plane points and *G* and *G'* be two separate trees each interconnecting  $X_n$  with *G* consisting of *k* edges. Also suppose *G* and *G'* have length  $L_G$  and  $L_{G'}$  respectively. Let  $\rho = L_G/L_{G'}$  be defined as a  $\rho = R^k \rightarrow R$  function over the domain  $\Delta$  of the edge lengths of *G*. If  $\inf \rho = \rho_o$ , then the first derivative  $D_\rho(\mathbf{v})$  of  $\rho$  in the direction of a vector  $\mathbf{v}$  is  $\frac{\dot{L}_{G'}}{L_{G'}}(\frac{\dot{L}_G}{L_{G'}} - \rho_o)$ . Thus if  $\dot{L}_G < (>)0$  and  $\dot{L}_G/\dot{L}_{G'} > (<)0$  then  $D_\rho(\mathbf{v}) < (>)0$ .

**Theorem 1.** Let  $X_n = \{x_1, x_2, ..., x_n\}$  denote a finite collection of *n* Euclidean plane points and suppose *T* is a minimal *T*1 tree interconnecting  $X_n$ . Then any two edges of *T* meet at an angle of at least 75°.

Before proving this theorem the following lemmas will be considered.

**Lemma 1.** Let  $x'_2$ ,  $x_3$ ,  $x'_4$ ,  $x'_5$  be the corners of a square such that  $x'_2$  lies at the "origin",  $x_3$  lies on the "positive y-axis" and  $x'_5$  lies on the "positive x-axis". Let  $| \ |$  be the length function. As shown in figure 1, let b be the third point of the equilateral triangle  $\Delta bx'_4x'_5$ ,  $l_U$  be a line passing through  $x_3x'_4$ ,  $I_L$ , be a line passing through  $x'_2x'_5$ , l' be a line passing through  $x_3$  and b, C' be a circular arc of radius  $|x'_2x_3|$  centered at  $x'_2$ , p be the intersection point of C' and l',  $\Delta x_4x_5o$  be an equilateral triangle of side length at most  $|x_3o|$  such that



*Figure 1.* The positioning of  $\Delta x_4 x_5 o$ .

o lies on l' between b and p,  $x'_4$  lies above l', and  $x'_5$  lies below l' and outside C'. Also let  $\delta$  be the angle measured clockwise at  $x_4$  from a line parallel with  $x'_2x_3$  to  $x_4x_5$ . Then (i) if  $x_4x_5$  is parallel to  $x'_2x_3$  (i.e.  $\delta = 0$ ) then  $x_4$  lies below  $l_U$ . (ii) if  $x_4$  lies above  $l_U$  then  $\delta \ge 0$ .

**Proof:** Let q' be a line passing through  $x'_4x'_5$ .

(i) If  $x_5$  lies on the right hand side of q' then clearly  $x_4$  lies below  $l_U$ . If  $x_4$  lies on the left hand side of q' then let  $z_o$  be the point of intersection of l' and  $x'_4x'_5$ . Then  $|z_ox'_5|/|x'_4x'_5| = \cos 30^\circ \cdot \tan 15^\circ + 0.5$ . It is only necessary to consider when  $x_5$  lies on C'. Let z be the intersection point of l' and  $x_4x_5$ , w be the intersection point of  $l_U$  and a line passing through  $x_4$  and  $x_5$ . If  $\theta = \angle x'_5 x'_2 x_5$ , then

$$|zx_5| = |x'_2 x_3| (1 - \sin \theta - \cos \theta \cdot \tan 15^\circ), \qquad |wx_5| = |x'_2 x_3| (1 - \sin \theta),$$

and

$$\frac{|zx_5|}{|wx_5|} = 1 - (\cos\theta \cdot \tan 15^\circ) / (1 - \sin\theta) \le \left(\sqrt{3/2}\right) \cdot \tan 15^\circ + 0.5 = \frac{|z_0 x_5'|}{|x_4' x_5'|}$$

for  $0^{\circ} \le \theta \le 60^{\circ}$ . Thus  $X_4$  must lie below  $l_{\rm U}$ . Note that at  $\theta = 60^{\circ}$ ,  $p = x_5$ .

(ii) If  $x_4$  lies on the right hand side of q' then  $\delta > 0$ . If  $x_4$  lies on the left hand side of q' then suppose  $x_4$  lies above  $l_U$  and  $\delta < 0$ . It will be shown that  $x_5$  lies in C'. Note that it is only necessary to consider when  $x_4$  lies on  $l_U$ . By definition o lies on l'. Thus if o = b, then  $x_5$  will lie inside C' on a line, l'',  $60^\circ$  to  $l_L$  at  $x'_5$ . (When  $x_4 = x_3$  or  $x_4 = x'_4$ ,  $x_5$  lies on C'). As o moves along l' toward p,  $x_5$  will clearly remain inside C'. When  $x_5x_4$  is parallel to  $x'_2x_3$ , i.e. corresponding to when  $\delta = 0$ ,  $x_5$  will still lie inside as a consequence of (i). Thus  $\delta$  cannot be less than zero.

**Lemma 2.** Suppose  $X_4 = \{x_2, x_3, x_4, x_5\}$  is a set of four Euclidean plane points connected by a minimal T1 tree G consisting of the spanning edge  $x_2x_3$  and the full Q-component  $Q(x_3, x_4, x_5)$ . Then the angle  $\theta$  between  $x_2x_3$  and  $Q(x_3, x_4, x_5)$  at  $x_3$  is at least 75°.

**Proof:** The aim will be to show that a shorter tree than *G* exists by replacing one or both components with different components of shorter sum total length. Suppose  $x_2x_3$  and  $Q(x_3, x_4, x_5)$  meet at  $x_3$  at an angle of  $\theta < 75^\circ$ . Let *s* be the Steiner point of  $Q(x_3, x_4, x_5)$  and *o* be the third point of the equilateral triangle  $\Delta ox_4x_5$ . Then  $|ox_3| = |x_3s| + |x_4s| + |x_5s|$  (Melzak, 1961). Now, as defined in Lemma 1, let  $x'_2$ ,  $x'_4$ ,  $x'_5$  and *b* be points such that  $x'_2$ ,  $x_3$ ,  $x'_4$ ,  $x'_5$  form the corners of a square and  $x'_4$ ,  $x'_5$ , *b* form the corners of an equilateral triangle so that *b* co-incides with *o*. Note that  $\angle bx_3x'_2 = 75^\circ$ . Let *C* be a circular arc of radius  $|x_3b|$  centered at *b*, and define  $l_U$ ,  $l_L$ , l', C', and  $\delta$  as in Lemma 1. There are a number of situations to consider.

(a)  $x_2$  lies strictly inside the curve *C* and  $x_2b$  does not intersect  $x_4x_5$ . Let *u* be the intersection point of  $x_2x_3$  and a line passing through  $x_5$  and *o* (figure 2). Clearly  $|x_3o| > |uo|$ 



*Figure 2.* The positioning of  $x_2$ .

so  $L_G = |x_2x_3| + |Q(x_3, x_4, x_5)| > |x_2x_3| + |uo| = (|x_2x_3| + |ux_5|) + |x_5o| \ge |Q(x_2, x_3, x_5)| + |x_4x_5|$ . Thus G is not minimal as  $\{Q(x_2, x_3, x_5), x_4x_5\}$  is shorter. Note that  $Q(x_2, x_3, x_5)$  may or may not be full.

- (b)  $x_2$  lies strictly inside the curve *C* and does intersect  $x_4x_5$ . In this case  $|Q(x_3, x_4, x_5)| = |x_3o| > |x_2o| = |Q(x_2, x_4, x_5)|$ . Therefore  $Q(x_3, x_4, x_5)$  may be replaced by the shorter  $Q(x_2, x_4, x_5)$  which again may or may not be full.
- (c)  $x_2$  lies on or outside the curve *C*. Note that  $x_2$  must lie strictly below the line  $l_L$  else  $\theta \ge 75^\circ$ . If  $x_5$  lies inside the curve *C'* then  $x_2x_3$  may be replaced by the shorter  $x_2x_5$ . This will be apparent as  $x_5$  will strictly be contained in the circular arc of radius  $x_2x_3$  centered at  $x_2$ .

Now suppose  $x_5$  does not lie inside C'. If  $\delta < 0$  then by Lemma 1,  $x_4$  must lie strictly below  $l_U$ .

Consider  $G' = \{x_4x_5, Q(x_2, x_3, x_4)\}$  (figure 3a). Let s' be the Steiner point of  $Q(x_2, x_3, x_4), 0 < \beta = \langle x'_2, x_2, x_3, \beta < \gamma'' = \langle x'_2, x_2, s' \text{ and assume } \rho' L_G / L_{G'} \leq 1$ . Move  $x_2$  toward  $x'_2$  such that  $x'_2x_2$  decreases at a rate of -1. The  $L_G = -\cos\beta < -\cos\gamma'' = \dot{L}_{G'} < 0$  so  $\dot{L}_G / \dot{L}_{G'} > 1$  and  $D_{\rho'}(\mathbf{v}) < 0$ . Thus the ratio  $\rho'$  will decrease. Similarly if  $\alpha = \langle s, x_5, x_4$  then move  $x_5$  toward s so that  $\dot{L}_G = -1 < -\cos\alpha = \dot{L}'_G < 0$  to again give  $\dot{L}_G / \dot{L}_{G'} > 1$  and  $D_{\rho'}(\mathbf{v}) < 0$ . Note too that as b is fixed, o will move along l' toward  $x_3$  and  $\delta$  will increase. When  $x_2 = x'_2$  and  $\delta = 0, x_3$  and  $x_2$  lie on  $l_U$  and  $l_L$  respectively and  $x_4$  and  $x_5$  both lie between  $l_U$  and  $l_L$ . Note here that  $x_5$  may or may not now lie inside C''. Let  $w_2, w_3, x_4, x_5$  be the four points of a rectangle such that  $w_3$  lies on l'. (figure 3b) and

note that as  $x_4$  lies strictly below  $l_U, w_3 \neq x_3$ .

Move  $x_3$  toward  $w_3$  along l' and  $x_2$  toward  $w_2$  at such rates so that  $x_2x_3$  is always perpendicular to  $l_U$  and  $l_L$ . Let  $\emptyset = \angle w_3, x_3, s'$  and  $\omega = \angle w_2, x_2, x_3$ . Then  $\dot{L}_G = -1 - \cos 75^\circ - \sin 75^\circ \cdot \cot \omega$ , and  $\dot{L}_{G'} = -\cos \emptyset - \sin 75^\circ \cdot \csc \omega \cdot \cos(\omega - \emptyset + 15^\circ)$ . Consider  $f(\omega, \emptyset) = -\dot{L}_{G} + L_{G}$ . Then

Consider  $f(\omega, \emptyset) = -\dot{L}_G + L_{G'}$ . Then

$$f(\omega, \emptyset) = 1 + \cos 75^{\circ} - \cos \emptyset + \sin 75^{\circ} \cdot \left\{ \frac{(\cos \omega \cdot \cos(\omega - \emptyset + 15^{\circ}))}{\sin \omega} \right\}$$





Figure 3. Regular point movement toward rectangular configuration.

and

$$\delta f(\omega, \varnothing) / \delta \omega = -\sin 75^{\circ} \cdot \left\{ \frac{(1 - \cos(15^{\circ} - \varnothing))}{\sin^2 \omega} \right\} \le 0$$

for  $0 < \omega \leq 90^{\circ}$ .

Thus  $f(\omega, \emptyset) \ge f(90, \emptyset) = 1 + \cos 75^\circ - \cos \emptyset - \sin 75^\circ \cdot \cos(105^\circ - \emptyset)$ . The unique minimum to this equation, for  $0^\circ < \emptyset < 60^\circ$  occurs when  $\emptyset = 51.206..^\circ$ 

So  $f(\omega, \emptyset) \ge f(90^\circ, 51.206..) = 0.0617339... > 0$  giving  $\dot{L}_G/\dot{L}_{G'} > 1$  and a decreasing  $\rho'$ . When  $w_2 = x_2$  and  $w_3 = x_3$ ,  $L_G$  and  $L_{G'}$  may be calculated directly and both have the same value. Therefore a contradiction arises as  $L_G$  cannot be shorter than  $L_{G'}$ .

If  $\delta \ge 0$  then  $x_5$  must lie above  $l_L$  else  $\delta < 0$  or  $x_5$  lies inside C'. Consider  $G' = \{x_4x_5, Q(x_2, x_3, x_5)\}$  and assume  $\rho' = L_G/L_{G'} \le 1$ . Let s' be the Steiner point of  $Q(x_2, x_3, x_5)$ 



Figure 4. Defined collection of 6 T1 trees.

*x*<sub>5</sub>). It is now possible to follow a similar procedure as was used in the previous situation when  $\delta < 0$  to arrive at the same contradiction that  $L_G$  cannot be shorter than  $L_{G'}$ .  $\Box$ 

Definition 1. Suppose  $X_5 = \{x_1, x_2, x_3, x_4, x_5\}$ , a collection of 5 Euclidean plane points, is interconnected by a T1 tree *G* consisting of two full *Q*-components  $Q(x_1, x_2, x_3)$  and  $Q(x_3, x_4, x_5)$  with Steiner points  $s_1$  and  $s_2$  respectively (figure 4a). Then define  $M = \{A, B, C, D, E, F\}$  to be the set of six T1 trees (figure 4b) as follows.

 $A = \{x_1x_2, Q(x_2, x_3, x_4), x_4x_5\}$   $B = \{x_1x_2, Q(x_2, x_3, x_5), x_4x_5\}$   $C = \{x_1x_2, Q(x_1, x_3, x_4), x_4x_5\}$   $D = \{x_1x_2, Q(x_1, x_3, x_5), x_4x_5\}$   $E = \{Q(x_1, x_2, x_5), Q(x_3, x_4, x_5)\}$  $F = \{Q(x_1, x_2, x_3), Q(x_1, x_4, x_5)\}$ 

*Definition 2.* Suppose  $X_5 = \{x_1, x_2, x_3, x_4, x_5\}$ , a collection of five Euclidean plane points, is interconnected by a T1 tree *G* consisting of two full *Q*-components  $Q(x_1, x_2, x_3)$  and

 $Q(x_3, x_4, x_5)$ , with Steiner points  $S_1$  and  $S_2$  respectively. Define  $\Delta$  to be the configuration space consisting of the six non negative edge lengths of *G*. i.e.  $\Delta = \{s_1x_1, s_1x_2, s_1x_3, s_2x_3, s_2x_4, s_2x_5\}$  such that the sum of the lengths is equal to 1 and the angle between  $s_1x_3$  and  $s_2x_3$  is fixed and is at most 75°.

**Lemma 3.** The length of any T1 tree with respect to  $\Delta$  is a convex function.

**Proof:** The general result is proved by Du et al. (1991). (As all the angles and the topology of *G* are fixed, a point of  $\Delta \subset R^5$  will determine the configuration of the regular points. The length of any component of a T1 network interconnecting *G* can then be written as a vector sum and its length shown to be a convex function.)

**Lemma 4.** Suppose  $X_5 = \{x_1, x_2, x_3, x_4, x_5\}$  is a collection of five Euclidean plane points lying in some configuration such that

(1) The T1 tree G (with length  $L_G$ ) interconnecting  $X_5$  consisting of two full Q-components  $Q(x_1, x_2, x_3)$  and  $Q(x_3, x_4, x_5)$  exists and is minimal;

(2) The angle  $\theta$  between the two edges  $s_1x_3$  and  $s_2x_3$  is strictly less than 75°.

Suppose the maximum value of  $L_G/L_{G'}$  for all  $G' \in M$  at the configuration is  $\rho^*$ . Then there exists another configuration of  $X_5$  such that G, consisting of the two full Q-components  $Q(x_1, x_2, x_3)$  and  $Q(x_3, x_4, x_5)$ , exists,  $\theta = 75^\circ$ , and  $L_G/L_{G'} \leq \rho^*$ .

**Proof:** As *G* is assumed to be minimal at the initial configuration,  $\rho^* \leq 1$ .

Note that if a line  $x_3x_1$  intersects  $x_5s_2$  then *G* cannot be minimal as  $Q(x_1, x_2, x_3)$  may be replaced by a shorter  $Q(x_1, x_2, x_5)$  giving  $L_G/L_{G'} > 1$  with  $G' = E \in M$ . Similarly if a line  $x_3x_5$  intersects  $s_1x_1$  then *G* cannot be minimal as  $Q(x_3, x_4, x_5)$  may be replaced by a shorter  $Q(x_1, x_4, x_5)$  giving  $L_G/L_{G'} > 1$  with  $G' = F \in M$ .

Thus suppose  $x_3x_1$  does not intersect  $x_5s_2$  and  $x_3x_5$  does not intersect  $s_1x_1$ .  $L_G$  remains constant if  $Q(x_1, x_2, x_3)$  is pivoted about  $x_3$  to increase  $\theta$  and  $L_{G'}$  does not decrease for any  $G' \in M$ . Thus  $L_G/L_{G'}$  will decrease for any  $G' \in M$  and so  $L_G/L_{G'} \leq \rho^*$  for any  $G' \in M$ .

*Remark.* If  $L_{G'}$  remains constant for some  $G' \in M$  when  $\theta$  is increased, then  $L_G/L_{G'} < 1$ . This can be seen for each  $G' \in M$ . For example, suppose  $G' = A \in M$ . If  $Q(x_2, x_3, x_4)$  is full then  $L_{G'}$  must strictly increase. If  $Q(x_2, x_3, x_4) = \{x_2x_3, x_3x_4\}$  then  $L_{G'}$  remains constant. However in this situation it is obvious that  $L_G/L_{G'} < 1$ . Note that  $Q(x_2, x_3, x_4)$  cannot be  $\{x_2x_3, x_2x_4\}$  or  $\{x_3x_4, x_2x_4\}$ . Thus, by similar consideration of all  $G' \in M$ , it will be clear that when  $\theta = 75^\circ$ ,  $L_G/L_{G'} < 1$  for all  $G' \in M$ .

**Proof of Theorem 1:** Consider two edges of *T* meeting at a common vertex with the angle between them strictly less than  $75^{\circ}$ . By definition each edge must either be a spanning edge or belong to some full *Q*-component. Let the two components be denoted by *G*. The proof will aim to show that a shorter network may be obtained by removing one or both components of *G* and by replacing them with different components of shorter sum length. There are 3 cases to consider.

*First Case.* G consists of two spanning edges. Clearly the edges may be replaced by a full Q-component of strictly shorter length.

*Second Case. G* consists of one spanning edge and one full *Q*-component. By Lemma 2 there exist components of strictly shorter sum length which may be used as replacements.

*Third Case. G* consists of two full *Q*-components. In this case, the proof follows the ideas of Du and Hwang (1992).

Without loss of generality suppose *G* interconnects  $X_5 = \{x_1, x_2, x_3, x_4, x_5\}$  and *G* consists of the two *Q*-components  $Q(x_1, x_2, x_3)$  and  $Q(x_3, x_4, x_5)$  with the angle  $\theta$  between  $s_1x_3$  and  $s_2x_3$  ( $s_1, s_2$  the Steiner points of  $Q(x_1, x_2, x_3)$  and  $Q(x_3, x_4, x_5)$  respectively) at  $x_3$  strictly less than 75°. Note that as *T* is minimal *G* must also be minimal. It is now only necessary to restrict attention to *G*. Consider  $G' \in M$ . Then  $L_G/L_{G'} \leq 1$  and by the Remark following Lemma 4 a minimum value of  $L_G/L_{G'}$  strictly less than 1 for all  $G' \in M$  will occur for some configuration of  $X_5$  when  $\theta = 75^\circ$ .

Consider the configuration space  $\Delta$  as defined in Definition 2 and set  $\theta = 75^{\circ}$ . Then there exists some interior point  $p_o \in \Delta$  such that *G* is a minimal T1 tree with  $|x_3s_1| \ge |s_2x_3| > 0$  (figure 5b).



*Figure 5.* a) Square configuration of regular points, b)  $|x_3s_1| \ge |s_2x_3| > 0$ .

Let  $p_1$  correspond to a configuration of  $X_5$  such that

$$|s_2 x_4| = |s_2 x_5| = 0$$

$$\frac{|s_2 x_3|}{|x_3 x_4|} = \frac{1}{\left(1 + \frac{2}{\sqrt{3}}(\sqrt{2} + \sin 15^\circ)\right)},$$

$$\frac{|s_1 x_2|}{|x_3 x_4|} = \frac{(2\sin 15^\circ)}{\left(\sqrt{3}\left(1 + \frac{2}{\sqrt{3}}(\sqrt{2} + \sin 15^\circ)\right)\right)}$$

and

$$\frac{|s_1x_1|}{|x_3x_4|} = \frac{|s_1x_3|}{|x_3x_4|} = \frac{\sqrt{2}}{\left(\sqrt{3}\left(1 + \frac{2}{\sqrt{3}}(\sqrt{2}\sin 15^\circ)\right)\right)}$$

i.e. when  $s_2 = x_4 = x_5$  and  $x_1, x_2, x_3$ , and  $x_4(=x_5)$  lie as the corners of a square (figure 5a). Note that for any  $G' \in M$ ,  $L_G/L_{G'} = 1$  at  $p_1$ .

Now consider the path  $(1-\lambda)p_1 + \lambda p_o \in \Delta$  for  $\lambda \ge 0$ . Note that since  $|s_2x_4| = |s_2x_5| = 0$  at  $p_1$  but  $|s_2x_4| > 0$  and  $|s_2x_5| > 0$  at  $p_o$ , some edge of *G* must decrease at a constant rate as  $\lambda$  increases. Let  $r = |s_1x_3|/|s_2x_3|$ . Then  $r(\lambda)$  is an increasing function. (At  $p_1, r = \sin 45^\circ/\sin 60^\circ < 1$ , and at  $p_o, r \ge 1$ ). Thus there will exist some  $\lambda > 1$  such that one of the following occurs.

(a) G intersects itself.

- (b)  $|s_1x_3| \cdot 2\cos 75^\circ \le |s_2x_3| \le |s_1x_3|$  and at least one *Q*-component of *G* is not full.
- (c)  $|s_2x_3| = |s_1x_3| \cdot 2\cos 75^\circ$  and both *Q*-components of *G* are full.
- (d)  $|s_1s_3| \cdot 2\cos 75^\circ > |s_2x_3|$

Let  $p'_1 \in \Delta$  correspond to the smallest  $\lambda > 1$  for which one of the above occurs. Then to prove Theorem 1 it is necessary to find a T1 tree  $G' \neq G$  such that  $L_G/L_{G'} \geq 1$  at both  $p_1$ and  $p'_1 \in \Delta$ . It will then follow that  $L_G/L_{G'} \geq 1$  at  $p_o$  by the convexity of  $L_{G'}$  and hence a contradiction that G is minimal.

Each situation is considered separately.

- (a) G intersects itself. There are two possibilities.
  - If  $s_2x_5$  intersects  $s_1x_1$  (figure 6a) then choose  $G' = \{Q(x_1, x_2, x_5), Q(x_3, x_4, x_5)\} = E \in M$ . Since  $|Q(x_1, x_2, x_5)| \le |Q(x_1, x_2, x_3)|$  at  $p'_1, L_G/L_{G'} \ge 1$ , at both  $p_1$  and  $p'_1$ . Thus  $L_G/L_{G'} \ge 1$  at  $p_o$  by the convexity of G' and so contradicting the minimality of G.
  - If  $s_1x_1$  intersects  $s_2x_5$  (figure 6b) then choose  $G' = \{Q(x_1, x_2, x_3), Q(x_1, x_4, x_5)\} = F \in M$  and a similar argument follows.
- (b)  $|s_1x_3| \cdot 2 \cos 75^\circ \le |s_2x_3| \le |s_1x_3|$  and at least one *Q*-component of *G* is not full. In this case  $p'_1$  lies on the boundary of  $\Delta$ . Assume *G* does not intersect itself. Note that both  $x_4s_2$  and  $x_5x_2$  have non zero length at  $p'_1$ , and  $|s_1x_3| \ge |x_3s_2| > 0$  also at  $p'_1$ . Thus only  $x_1s_1$  or  $x_2s_1$  can have zero length at  $p'_1$ .



*Figure 6.* a)  $s_2x_5$  intersecting  $s_1x_1$ , b)  $s_1x_1$  intersecting  $s_2x_5$ .

The problem can now be considered as a geometric problem. Let  $x'_4$ ,  $x'_5$  be points such that  $s_1$ ,  $x_3$ ,  $x'_4$ ,  $x'_5$  form the corners of a square. Also let o' be the third point of the equilateral triangle  $\Delta o's_1x_3$ , C' be the circular arc of radius  $|s_1x_3|$  at  $S_1$ , o be the third point of the equilateral triangle  $\Delta ox_4x_5$ , q be a line passing through o' and the midpoint of  $x'_4x'_5$ , q' be a line passing through o' and  $S_1$ ,  $l_U$  be a line passing through  $x_3$ and  $x'_4$ ,  $l_L$ . be a line passing through  $s_1x'_5$ , and define  $\delta$  be the angle measured clockwise at  $x_4$  from a line parallel with  $x'_4x'_5$  to  $x_4x_5$ . Note that if  $|s_2x_3| = |s_1x_3| \cdot 2 \cos 75^\circ$  then  $s_2$  will lie on C' (figure 7).

There are two situations to consider.

- (b.1) If  $x_5$  lies inside C' then  $|s_1x_5| \le |s_1x_3|$  and  $|Q(x_1, x_2, x_5)| \le |Q(x_1, x_2, x_3)|$ . Thus G' can be chosen to be  $E \in M$  to give  $L_G/L_{G'} \ge 1$  and a contradiction that G is minimal at  $p_o$ .
- (b.2) If  $x_5$  lies outside C' then there are a number of situations to consider.



*Figure 7.* The location of  $x_5$ .

280

#### PLANE MINIMAL T1 TREES

(i)  $x_4$  lies below  $l_U$  and  $x_5$  lies above  $l_L$ . If  $|x_1s_1| = 0$  and  $\delta \le 0$  then choose G' to be  $\{x_1x_2, Q(x_1, x_3, x_4), x_4x_5\} = C \in M$ . If  $x_4$  lies strictly below  $l_U$ then follow similarly the procedure used in Lemma 2 to show that  $|s_1x_3|$  +  $|Q(x_3, x_4, x_5)| \ge |x_4x_5| + |Q(x_1, x_3, x_4)|$  to give the contradiction. If  $x_4$ lies  $l_{\rm U}$  then it may be shown again that  $|s_1x_3| + |Q(x_3, x_4, x_5)| \ge |x_4x_5| + |x_5| + |x$  $|Q(x_1, x_3, x_4)|$  by decreasing the edges  $s_1x_3 = x_1x_3$  at  $s_1 = x_1$  or decreasing  $s_2x_5$  at  $x_5$  until  $x_1, x_3, x_4, x_5$  lie as the corners of a rectangle from which  $L_G = L_{G'}$  to give the contradiction of the minimality of G.

Similarly if

 $|x_2s_1| = 0$  and  $\delta \le 0$  then choose G' to be  $\{x_1x_2, Q(x_2, x_3, x_4), x_4x_5\} = A \in M$ .  $|x_1s_1| = 0$  and  $\delta > 0$  then choose G' to be  $\{x_1, x_2, Q(x_1, x_3, x_5), x_4x_5\} =$  $D \in M$ .

 $|x_2s_1| = 0$  and  $\delta > 0$  then choose G' to be  $\{x_1x_2, Q(x_2, x_3, x_5), x_4x_5\} = B \in M$ .

- (ii)  $x_4$  lies above  $l_U$  and  $x_5$  lies above  $l_L$ . In this situation  $\delta > 0$  so if  $|x_1s_1| = 0$ choose G' to be  $D \in M$ , and if  $|x_2s_1| = 0$  choose G' to be  $B \in M$  and proceed as in (i).
- (iii)  $x_4$  lies below  $l_U$  and  $x_5$  lies below  $l_L$ . If  $\delta \leq 0$  and  $|x_1s_1| = 0$  choose G' to be  $C \in M$ , and if  $\delta \leq 0$  and  $|x_2s_1| = 0$  choose G' to be  $A \in M$ . Move  $x_5$ toward  $s_2$  to decrease  $L_G/L_{G'}$  until  $\delta = 0$ . If  $x_5$  lies above  $l_L$  when  $\delta = 0$ then proceed as in Lemma 2 to obtain the contradiction. If  $x_5$  lies below  $l_L$ when  $\delta = 0$  then it is not possible to proceed as in Lemma 2. It will therefore be necessary to re-examine the problem. Note here that o lies below q. This situation will now be examined in (iv).

If  $\delta > 0$  then *o* must lie below *q*. This situation will also now be examined in (iv).

(iv)  $x_4$  lies above  $l_{\rm U}$  and  $x_5$  lies below  $l_{\rm L}$ . In this situation o lies below q so  $|x_3o| \ge |s_1o|.$ 

First suppose  $|x_1s_1| = 0$ , (figure 8a). If  $s_1o$  intersects  $x_4x_5$  then  $|Q(x_1, x_4, x_5)| = 0$ , (figure 8a).  $|x_5|| \le |Q(x_3, x_4, x_5)|$  so choose G' to be  $F \in M$ . If  $s_1 o$  does not intersect  $x_4x_5$  then note that o must also lie below  $l_{\rm L}$ . Let u be the point of intersection of  $s_1x_3$  and a line passing through  $ox_5$ . Then clearly  $|x_3o| > |uo| \ge |x_1x_5| +$ 



(a)



Figure 8. a)  $|x_1s_1| = 0$ , b)  $|x_2s_1| = 0$ .



*Figure 9.*  $x_1o$  does not intersect  $x_4x_5$ .

 $|x_5o|$ . Thus  $Q(x_3, x_4, x_5)$  may again be replaced by the shorter  $Q(x_1, x_4, x_5)$  and G' may be chosen to be  $F \in M$ .

Next, suppose  $|x_2s_1| = 0$ , (figure 8b). If  $x_1o$  intersects  $x_4x_5$  then  $|Q(x_1, x_4, x_5)| \le |s_1o| \le |Q(x_3, x_4, x_5)|$  by geometric considerations so G' may again be chosen to be  $F \in M$ .

Now suppose  $x_1o$  does not intersect  $x_4x_5$ . Define *d* to be the distance from  $s_1$  to the intersection point between q' and a line passing through  $s_2$  and  $x_5$  when  $|x_3s_2| = |x_3s_1|$ , (figure 9).

If  $|x_1s_1| \ge d = (\cos 52.5^{\circ}/\cos 67.5^{\circ}) \cdot |x_3s_1| = (1.5907703...)$ .  $|x_3s_1|$  (i.e. in this situation  $x_5$  must lie above q'.), then the shortest distance between  $x_5$  and  $x_1s_1$  is at most  $d \cdot \tan 30^{\circ} \cdot |x_3s_1|/(\tan 30^{\circ} + 1) = (0.5822623...)$ .  $|x_3s_1| < |x_3s_1|$ . Thus  $|Q(x_1, x_2, x_3)| \ge |Q(x_1, x_2, x_5)|$  so G' may be chosen to be  $E \in M$ .

Now suppose  $x_1s_1 < d$ . If  $x_5$  lies below q' then o must also lie below q'. Let u be the point of intersection of  $x_3s_1$  and a line through o and  $x_5$ . Then clearly  $|x_3o| > |uo| \ge |s_1x_5| + |x_5o| \ge |x_1x_5| + |x_5o|$ . Thus  $Q(x_3, x_4, x_5)$  may again be replaced by the shorter  $Q(x_1, x_4, x_5)$  and G' may be chosen to be  $F \in M$ .

If  $x_5$  lies above q' then there are two situations.

- If  $|x_1x_5| \leq |x_3s_1|$  then replace  $Q(x_1, x_2, x_3)$  by the shorter  $Q(x_1, x_2, x_5)$  and choose G' to be  $E \in M$ .
- If  $|x_1x_5| > |x_3s_1|$  then  $|x_1s_1|$  can be at most  $(d |x_3s_1|) = (0.5907703...) |x_3s_1|$ .
  - Note that the angle between  $x_1x_5$  and q' at  $x_1$  is at most the angle that  $x'_5x_1$  is with q' and is less than 90°, (figure 10). Let u' be the intersection point between  $x_1s_1$  and



*Figure 10.* The angle between  $x_1x_5$  and q' at  $x_1$ .

a line passing through *o* and  $x_5$ . Then the angle between u'o and q' is also less than 90° and  $|x_3o| > |u'o| = |u'x_5| + |x_5o| > |x_1x_5| + |x_5o|$ . Therefore  $Q(x_3, x_4, x_5)$  may be replaced by the shorter  $Q(x_1, x_4, x_5)$  and *G'* may be chosen to be  $F \in M$ . Similarly if *u'* is the intersection point of  $x_3s_1$  and a line passing through *o* and  $x_5$  then  $|x_3o| > |u'o| \ge |s_1x_5| + |x_5o| \ge |x_1x_5| + |x_5o|$  and *G'* may be chosen to be  $F \in M$  again.

- (c)  $|s_2x_3| = |s_1x_3| \cdot 2\cos 75^\circ$  and both *Q*-components of *G* are full.
  - If  $x_5$  lies inside C' then  $|Q(x_1, x_2, x_5)| \le |Q(x_1, x_2, x_3)|$  so G' may be chosen to be  $E \in M$ .
  - If  $x_5$  lies outside C' then as  $s_2$  lies on C',  $x_5$  lies below  $l_L$  and  $|s_2x_2| \ge \sqrt{2} \cdot |s_1x_3|$ . Let w be the intersection point of q and a line passing through  $x_3$  and  $s_2$ , (figure 7). Then  $|x_3o| = |Q(x_3, x_4, x_5)| = |s_2x_3| + |s_2x_4| + |s_2x_5| > (2\cos 75^\circ + \sqrt{2}) \cdot |s_1x_3| > |x_3w|$ . Thus o must lie below q. The proof may now follow similarly to that of (b.iv).

### (d) $|s_1x_3| \cdot 2\cos 75^\circ > |s_2x_3|$ .

If  $|s_1x_3| \cdot 2\cos 75^\circ < |s_2x_3|$  at  $p_0$  then  $p'_1$  can always be chosen to satisfy one of the conditions (a), (b), or (c) for some  $\lambda > 1$ . If at  $p_o$ ,  $|s_1x_3| \cdot 2\cos 75^\circ \ge |s_2x_3|$ , then it only needs to be shown that *G* cannot be minimal at  $p_0$  for  $\theta \le 75^\circ$ . Note that  $|s_1x_1| > 0$ . Thus if  $x_5$  lies in or on *C'* then  $L_G > L_{G'}$  for  $G' = E \in M$ . If  $x_5$  lies outside *C'* then since  $s_2$  lies inside *C'*,  $x_5$  must lie below  $l_L$ . Note also that as it only needs to be shown that *G* is not minimal at  $p_o$  there is now not the restriction of examining networks only from *M*.

Thus it will be apparent that  $|x_1x_5|$  is strictly less than either  $|s_1x_1|$  or  $|s_2x_5|$ . If the former occurs then *G* is longer than  $\{x_2x_3, Q(x_3, x_4, x_5), x_1x_5\}$ , and if the latter occurs then *G* is longer than  $\{x_1x_5, Q(x_1, x_2x_3), x_3x_4\}$ .

This completes the proof of the third case.

Thus since  $(T/G) \cup G'$  is a T1 tree and  $L_{G'} < L_G$ ,  $|(T/G) \cup G'| < |T|$  and so T cannot be minimal.

*Remark.* Note that as the proof was by contradiction method it is clear that the result is best possible. i.e. a T1 network with any angle less than  $75^{\circ}$  cannot be minimal.

## References

D.Z. Du, Y.J. Zhang, and Q. Feng, "On better heuristic for Eulidean Steiner minimum trees," in *Proc. of the 32nd Ann. Symp. on Foundations of Computer Science*, 1991, pp. 431–439.

D.Z. Du and F.K. Hwang, "A proof of Gilbert and Pollak's conjecture on the Steiner ratio," *Algorithmica*, vol. 7, pp. 121–135, 1992.

Z.A. Melzak, "On the problem of Steiner," Canad. Math. Bull., vol. 4, pp. 143-148, 1961.

J.H. Rubinstein and D.A. Thomas, "The calculus of variations and the Steiner problem," *Ann. Oper. Res.*, vol. 33, pp. 481–499, 1991.

284