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Abstract. In this paper it is shown that the minimum angle between any 2 edges of an Euclidean plane minimal
T1 tree, or 3-size Steiner tree, is at least.75
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Introduction

Let X, ={x1, X2, ..., Xn} denote a finite collection af Euclidean plane (regular points).

A Steiner minimal tree SMT is a shortest length network interconnectingshere (1) all
angles between edges are at least®1&td (2) there may be extra points, called Steiner
points. Itis called full if there are exactty— 2 Steiner points and all edges meet at exactly
120°. The underlying graph of a Steiner tree is called the topology. A T1 tree, or 3-size
Steiner tree (Du et al., 1991), interconnectigconsists of spanning edges and minimal
Steiner trees that interconnect 3 regular points, calecbomponents.

A minimal (shortest length) T1 tree may contain edges meeting at angles less than 120
and it is conjectured thdtsyt/Lty > 0.93185.. whereLgyr is the length of a Steiner
minimal tree andLt; is the length of a minimal T1 tree. The value 0.93185... may be
obtained from 4 points lying as the corners of a square. In this paper it is shown that the
angle between any 2 edges of a minimal T1 tree must be least 75

The variational approach

For a full discussion see Rubinstein and Thomas (1991).X.et {X1, Xo, ..., Xn} ben
Euclidean plane points ar@d andG’ be two separate trees each interconnecKpgvith
G consisting ofk edges. Also suppos8 and G’ have lengthLg and Lg respectively.
Let p = Lg/Lg be defined as @ = R — R function over the domain\ of the edge
lengths ofG. If infp = po, then the first derivativ® , (v) of p in the direction of a vector
vis fe (LL—; — po). ThusiflLg < (>)0andLg/Lg > (<)0thenD,(v) < (>)0.

Le

Theorem 1. Let X,={X1, Xo, ..., Xy} denote a finite collection of n Euclidean plane
points and suppose T is a minimal Tree interconnecting X Then any two edges of T
meet at an angle of at leagt°.
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Before proving this theorem the following lemmas will be considered.

Lemma 1. Let X, X3, X,, X5 be the corners of a square such thgtlies at the"origin”,
X3 lies on the positive y-axi$ and x, lies on the"positive x-axis. Let| | be the length
function. As shown in figurk let b be the third point of the equilateral trianglebx; xz, Iy
be a line passing throughsx,, |, be a line passing through;xg, I’ be a line passing
through % and b C’ be a circular arc of radiugx;xs| centered at X p be the intersection
point of C and I', Ax4Xs0 be an equilateral triangle of side length at m@sfo| such that
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Figure 1L The positioning ofA x4Xs0.
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o lies on ! between b and p,dies above, and X, lies below [ and outside C Also lets
be the angle measured clockwise afrom a line parallel with ¥x3 to xsXs. Then

(i) if Xaxs is parallel to %xz(i.e. § = 0) then x lies below |;.

(ii) if x4 lies above|, thens > 0.

Proof: Letq’ be aline passing througtjxs.

() If x5 lies on the right hand side af’ then clearlyx, lies belowly. If x4 lies on
the left hand side ofj’ then letz, be the point of intersection df andx;x;. Then
|ZoXg|/IXyX5| = cos 30 - tan 15 + 0.5. Itis only necessary to consider wheslies
onC’. Letzbe the intersection point ¢f andx,xs, w be the intersection point &
and a line passing through andxs. If 0 = /x{x5xs, then

|zX6| = |X5X3|(1 — sing — cosd - tan 15), |lwXs| = [x5X3](1 — sing),
and
z . X/
2% =1— (cosd - tan 15)/(1 —sind) < (1/3/2) - tan15 + 0.5 = |Zc/’ ?'
|wXs| |X4X5|

for 0° < 6 < 60°. ThusX,4 must lie belowly. Note that at = 60°, p = Xs.

(ii) If x4 lies on the right hand side af thené > 0. If x4 lies on the left hand side of
g’ then suppose, lies abovdy ands < 0. It will be shown thaixs lies inC’. Note
that it is only necessary to consider wherlies only. By definitiono lies onl’. Thus
if 0 = b, thenxs will lie inside C’ on a line,l”, 60° to I atxg. (Whenxs = x3 or
X4 = Xy, X5 lies onC’). As o moves alond’ toward p, xs will clearly remain inside
C’. Whenxsx, is parallel tox5xs, i.e. corresponding to wheh= 0, xs will still lie
inside as a consequence of (i). ThHusannot be less than zero. O

Lemma2. Suppose X= {Xz, X3, X4, X5} is a set of four Euclidean plane points connected
by a minimal T tree G consisting of the spanning edgexand the full Q-component
Q(X3, X4, X5). Then the anglé between xx3 and Q(Xs, X4, X5) at X3 is at least75°.

Proof: The aim will be to show that a shorter tree th@nexists by replacing one or
both components with different components of shorter sum total length. Suppesnd
Q(Xs, X4, X5) Meet atxz at an angle of < 75°. Lets be the Steiner point oD (Xz, X4, Xs)
ando be the third point of the equilateral triangh®x,xs. Then|oxz| = [X3S|+|X4S| + |XsS|
(Melzak, 1961). Now, as defined in Lemma |, b}, x;, x5 and b be points such that
X5, X3, X4, Xg form the corners of a square arfl xg, b form the corners of an equilateral
triangle so thab co-incides witho. Note that/bxsx;, = 75°. Let C be a circular arc of
radius|xsb| centered ab, and defindy, I, I’, C’, andé as in Lemma 1. There are a number
of situations to consider.

(a) xyliesstrictly inside the curv€ andx,bdoes notinterseeixs. Letu be the intersection
point of xox3 and a line passing througty ando (figure 2). Clearly|xzo| > |uo|
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Figure 2 The positioning oks.
SO Lg = |XoX3| + |Q(X3, Xa, Xs)| > [XoX3| + [uO| = (|X2X3| + [UX]) + [Xs0| >

|Q(X2, X3, X5)| + |XaX5|. ThusG is not minimal as{Q(x,, X3, Xs), X4Xs} is shorter.
Note thatQ(xz, X3, Xs) may or may not be full.

(b) x lies strictly inside the curv€ and does interse&txs. In this caseQ(Xs, X4, X5)| =
[X30] > [X20] = |Q(X2, X4, X5)|. ThereforeQ(xs, X4, Xs) may be replaced by the
shorterQ(x,, X4, Xs) Which again may or may not be full.

(c) x lies on or outside the curv@. Note thatx, must lie strictly below the lindy else
0 > 75°. If x5 lies inside the curv€’ thenx,xz may be replaced by the shorteixs.
This will be apparent ass will strictly be contained in the circular arc of radiMsxs
centered axo.

Now supposess does not lie insid&€’. If § < 0 then by Lemma 1x4 must lie strictly
belowly.

ConsiderG’ = {x4Xs, Q(X2, X3, X4)} (figure 3a). Lew’ be the Steiner point dD(xz, X3,
X4),0 < B = [X5, X2, X3, B < " = [X5, X2, 8 and assume’Lg/Le < 1. Movex,
toward x; such thatx;x, decreases at a rate efl. TheLg = —cosp < —cosy” =
Le <0solg/Le > 1andD,(v) < 0. Thus the ratipp’ will decrease. Similarly if
a = /S, Xs, X4 then movexs towards so thatLg = —1 < — cosa = L;; < 0 to again give
Le/Le > 1 andD, (v) < 0. Note too that ab is fixed, o will move alongl’ towardxs
ands will increase. Wherx; = x5 and$é = 0, Xz andx; lie only andl, respectively and
X4 andxs both lie betweethy andl, . Note here thaxs may or may not now lie insid€”.

Letwy, ws, X4, X5 be the four points of a rectangle such thatlies onl’. (figure 3b) and
note that a, lies strictly belowy, ws # Xs.

Move x3 toward w3 alongl’ and x, toward w, at such rates so thabxs is always
perpendicular tdy andl_ . Let @ = /w3, X3, 8 andw = Zwsy, Xo, X3. ThenlLg = —1 —
cos 78 — sin 75 - cotw, andLg = —cosg — sin 75 - cosea - coSw — & + 15°).

Considerf (o, @) = —Lg + Lg. Then

. -0+ 15
f(w,?)=1+cos78 —cosg +sin75 - { (cosw COS;?;] +159) }
w
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Figure 3 Regular point movement toward rectangular configuration.

and

<0

$f(w,2)/8w = —sIin75 - { (1—cog15 — ©)) }

sif w

for0 < w < 90°.

Thusf (w, @) > (90, @) = 1+ cos 75 — cosg — sin 75 - cog 105 — &). The unique
minimum to this equation, for'0< @ < 60° occurs wherz = 51.206..°

So f(w, @) > f(90°,51.206.) = 0.0617339.. > 0 givingLg/Le > 1 and a decreas-
ing o’. Whenw, = X, andwz = X3, Lg andLg may be calculated directly and both have
the same value. Therefore a contradiction arisdsg@esannot be shorter thdng .

If § > 0 thenxs must lie abovd, else§ < 0 or x5 lies insideC’. ConsiderG’ =
{X4Xs, Q(X2, X3, X5)} and assumg’ = Lg /L <1. Lets be the Steiner point dD(xz, X3,
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Xz

Figure 4  Defined collection of 6 T1 trees.

Xs). It is now possible to follow a similar procedure as was used in the previous situation
whené < 0 to arrive at the same contradiction thai cannot be shorter thdng,. O

Definition 1 SupposeXs = {X1, X2, X3, X4, X5}, @ collection of 5 Euclidean plane points,
is interconnected by a T1 tr&& consisting of two fullQ-componentQ(xy, X2, X3) and
Q(Xs, X4, X5) With Steiner pointss; ands, respectively (figure 4a). Then defiid =
{A, B,C, D, E, F} to be the set of six T1 trees (figure 4b) as follows.

A = {X1X2, Q(X2, X3, X4), XaXs5}
B = {X1X2, Q(X2, X3, X5), XaXs}
C = {X1X2, Q(Xy, X3, X4), X4Xs}
D = {X1X2, Q(X1, X3, X5), X4X5}
E = {Q(X1, X2, Xs5), Q(X3, X4, Xs5)}
F = {Q(X1, X2, X3), Q(X1, X4, Xs5)}

Definition2 Supposes = {X1, X2, X3, X4, X5}, a collection of five Euclidean plane points,
is interconnected by a T1 tr&& consisting of two fullQ-componentQ(xy, X2, X3) and
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Q(Xs, X4, X5), With Steiner pointss; andS, respectively. Define\ to be the configuration
space consisting of the six non negative edge lengtfis ak. A = {S;X1, 1 X2, S1X3, X3,
X4, X5} such that the sum of the lengths is equal to 1 and the angle beswegand
SXz is fixed and is at most 75

Lemma 3. The length of any T tree with respect ta\ is a convex function.

Proof: The generalresultis proved by Du etal. (1991). (As all the angles and the topology
of G are fixed, a point oA c R will determine the configuration of the regular points.
The length of any component of a T1 network interconnectngan then be written as a
vector sum and its length shown to be a convex function.) O

Lemma4. Suppose X= {Xi1, X2, X3, X4, X5} iS a collection of five Euclidean plane points
lying in some configuration such that
(1) The TLtree G(with length Lg) interconnecting X consisting of two full Q-components
Q(X1, X2, X3) and Q(X3, X4, X5) exists and is minimal

(2) The angle® between the two edgesxg and $Xz is strictly less thary5°.

Suppose the maximum value f AL for all G’ € M at the configuration i»*. Then
there exists another configuration of ¥uch that G consisting of the two full Q-components
Q(X1, X2, X3) and Q(Xz, Xa, X5), exists § = 75°, and Lg/Lg < p*.

Proof: As G is assumed to be minimal at the initial configuratiph,< 1.

Note that if a linexzx; intersectxss, thenG cannot be minimal a®Q(xy, X2, X3) may
be replaced by a short€¥(xy, Xz, Xs) giving Lg/Le > 1 with G’ = E € M. Similarly if
a linexsxs intersects; x; thenG cannot be minimal a®(xs, X4, Xs) may be replaced by a
shorterQ(x1, X4, X5) giving Lg/Lg > 1 withG' = F € M.

Thus suppos&sx; does not intersectss, andxsxs does not interse ; x;. Lg remains
constant ifQ(xy, X2, X3) is pivoted abouks to increase andL g does not decrease for
anyG’ € M. ThusLg/Lg will decrease for anys’ € M and soLg/Lg < p* for any
G e M. O

Remark If Lg remains constant for soni& € M whend isincreased, thebhg /Lo < 1.
This can be seen for ea€dl € M. For example, suppos®’ = A € M. If Q(x2, X3, Xa)

is full then Ls must strictly increase. 1Q(x, X3, X4) = {XoX3, X3X4} thenL g remains
constant. However in this situation it is obvious thaj/L s < 1. Note thatQ(xy, X3, X4)

cannot bgx,Xs, XoX4} Or {X3Xa, XoX4}. Thus, by similar consideration of &’ € M, it will

be clear that whef = 75°, Lg/Le < 1forallG' € M.

Proof of Theorem 1: Consider two edges df meeting at a common vertex with the angle
between them strictly less than°7By definition each edge must either be a spanning edge
or belong to some fullQ-component. Let the two components be denotedsbyThe
proof will aim to show that a shorter network may be obtained by removing one or both
components oG and by replacing them with different components of shorter sum length.
There are 3 cases to consider. O
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First Case. Gconsists of two spanning edges. Clearly the edges may be replaced by a full
Q-component of strictly shorter length.

Second Case. @onsists of one spanning edge and one @itomponent. By Lemma 2
there exist components of strictly shorter sum length which may be used as replacements.

Third Case. Gconsists of two fullQ-components. In this case, the proof follows the ideas
of Du and Hwang (1992).

Without loss of generality suppo§einterconnects(s = {X, X2, X3, X4, X5} andG consists
of the twoQ-component®)(Xy, X2, X3) andQ(Xs, X4, Xs) With the angl& betweers; x3 and
$X3 (51, S the Steiner points o (X1, X2, X3) and Q(Xs, X4, X5) respectively) aks strictly
lessthan 75 Note that ag is minimalG must also be minimal. Itis now only necessary to
restrict attention t@. ConsiderG’ e M. ThenLg/Lg < 1 and by the Remark following
Lemma 4 a minimum value of /L strictly less than 1 for alG’ € M will occur for
some configuration oKs wheng = 75°.

Consider the configuration spaseas defined in Definition 2 and set= 75°. Then there
exists some interior poirf, € A such thats is a minimal T1 tree withxzs;| > |$X3| > 0
(figure 5b).

%y X3

S

Xy Sz=)C4=)C5

(G

(b)

Figure 5 a) Square configuration of regular points|X3s;| > |Spx3| > O.
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Let p; correspond to a configuration &f such that
ISoXa| = [$X5| = 0

ISoXal _ 1
XeXal (14 Z(v2+sin 15))’
Isixa| (2sin15)

el (V3(1+ Z(V/2+5sin15)))’
and

SiXal _ [SiXsl _ V2
Xsxal  IxsXal  (V3(1+ FK(v2sin15)))

i.e. whens, = x4 = X5 andxy, Xz, X3, andx4(=Xs) lie as the corners of a square (figure 5a).
Note that for anyG’ € M, Lg/Le = 1 atp;.

Now consider the patlil—A)p. +ip, € A for A > 0. Note that sinces; x| =
|S2X5] = 0 at p; but |[s;%4] > 0 and|s;xs5| > 0 at p,, some edge o6 must decrease at a
constant rate asincreases. Lat = |s;X3|/|S:X3|. Thenr (1) is an increasing function. (At
p1, r =sin4%/sin60 < 1, and atp,, r > 1). Thus there will exist some > 1 such that
one of the following occurs.

(a) G intersects itself.

(b) |s1X3] - 2€0S 78 < |$X3] < |S1X3| and at least on®-component of is not full.
(€) |s2X3| = |s1X3| - 2 cos 78 and bothQ-components o6 are full.

(d) [s183]-2€0S78 > [$X3]

Let p] € A correspond to the smallest> 1 for which one of the above occurs. Then to
prove Theorem 1 itis necessary to find a T1 @e# G such that.s/Le > 1 at bothp;
andp] € A. It will then follow thatLc /L > 1 at p, by the convexity ofL ¢ and hence
a contradiction tha® is minimal.

Each situation is considered separately.

() G intersects itself. There are two possibilities.

If s,x5 intersectss;x; (figure 6a) then choos@’ = {Q(X1, X2, X5), Q(X3, X4, X5)} =
E € M. Since|Q(xy1, X2, X5)| < |Q(X1, X2, X3)| at p;, Le/Le > 1, at bothp,
andp;. ThusLg/Le > 1 at p, by the convexity ofG’ and so contradicting the
minimality of G.

If ;%1 intersectss;xs (figure 6b) then choos&’ = {Q(X1, X2, X3), Q(X1, X4, X5)} =
F € M and a similar argument follows.

(b) |six3| - 2€0s 78 < |sX3| < |s1%3| and at least on€-component ofG is not full. In
this casep; lies on the boundary of. AssumeG does not intersect itself. Note that
bothxss, andxsx, have non zero length g, and|s; x| > |x3s,| > 0 also atp;. Thus
only X181 Or Xp8 can have zero length g .
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Figure 6. a) spXs intersectings; X1, b) s1x; intersectingsyxs.

The problem can now be considered as a geometric problemx; | et be points
such thatsy, x3, Xy, X5 form the corners of a square. Also [Etbe the third point of
the equilateral trianglé\o’s;x3, C’ be the circular arc of radius; x3| at S, o be the
third point of the equilateral trianglaoxsxs, q be a line passing throught and the
midpoint ofx;x;, g be a line passing througiand$S,, Iy be aline passing through
andxy, I,. be aline passing througiixg, and defing be the angle measured clockwise
atxs from a line parallel withx,x; to x4xs. Note that if|s;x3| = [six3| - 2 cos 75 then
s, will lie on C’ (figure 7).

There are two situations to consider.

(b.1) If x5 lies insideC’ then|sixs| < |six3] and |Q(X1, X2, X5)| < |Q(X1, X2, X3)|.
ThusG’ can be chosento e € M to giveLg /L > 1 and a contradiction that
G is minimal atpo.

(b.2) If x5 lies outsideC’ then there are a number of situations to consider.

X3 x’i’ ‘
%y u
Sy o
) <0
(o) W
I xg 9
I
S, x’5
’
9 o

X2
xy

Figure 7. The location ofxs.
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@)

(ii)

(iii)

(iv)

X4 lies belowly andxs lies abovd, . If |x;S5| = 0 ands < 0 then choose
G’ to be{x1x2, Q(X1, X3, Xa), XaXs} = C € M. If x4 lies strictly belowly
then follow similarly the procedure used in Lemma 2 to show [hia| +
|Q(X3, X4, X5)| > |XaXs| + |Q(X1, X3, X4)| tO give the contradiction. Ik,
liesly then it may be shown again th@ixs| + | Q(Xs, Xa, Xs)| > |XaXs| +
|Q(X1, X3, X4)| by decreasing the edgeis<s = X1x3 ats; = X; or decreasing
S$Xs at X5 until g, X3, X4, X5 lie as the corners of a rectangle from which
Ls = L to give the contradiction of the minimality @.

Similarly if

|Xo$1| =0ands < 0thenchoosE&’ tobe{xiXz, Q(Xz, X3, Xa), XaXs} = A€ M.

[X181] = 0 and$ > O then choos&’ to be{xy, X2, Q(X1, X3, X5), XaXs} =
D e M.

[X2$1| = 0ands > 0thenchoos&’tobe{xi1xz, Q(Xz, X3, X5), X4Xs} = B € M.

X4 lies abovdy andxs lies abovd, . In this situations > 0 s0 if |1 =0
chooseG’ to be D € M, and if |x2$;] = 0 chooseG’ to be B € M and
proceed as in (i).

X4 lies belowly andxs lies belowl, . If § < 0 and|x;S;| = 0 chooseG’ to
beC € M, and if§ < 0 and|x,s;| = 0 chooseG’ to be A € M. Move Xs
towards, to decreasé.g/Lg until § = 0. If x5 lies abovd, whens = 0
then proceed as in Lemma 2 to obtain the contradictiowg lies belowl
whens = O thenitis not possible to proceed as in Lemma 2. It will therefore
be necessary to re-examine the problem. Note herefied belowq. This
situation will now be examined in (iv).

If § > 0thenomustlie belowg. This situation will also now be examined
in (iv).

X4 lies abovely and xs lies belowl, . In this situationo lies belowq so
IX30| > [510].

First supposéx;s:| = 0, (figure 8a). I, 0intersectx,xs then| Q(Xy, Xa,
Xs)| < |Q(Xs, Xa, X5)| SO choos&s’ to beF € M. If 5,0 does not intersect
X4Xs then note thad must also lie belov . Letu be the point of intersection
of 51Xz and a line passing througtxs. Then clearly{x30| > |uo| > |X1Xs| +

X3

S2
5=, %4

Xg

(a) (b)

Figure 8 a)|x3s1| = 0, b)|x2s1| = 0.
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Figure 9 x;0 does not intersecyXxs.

|Xs0|. ThusQ(Xs, X4, X5) may again be replaced by the shoi@ix;, X4, Xs)
andG’ may be chosen to ble € M.

Next, supposéx,si| = 0, (figure 8b). Ifx;0 intersectsxyxs then|Q(xy, X4, Xs)| <
|s10] < |Q(Xs, X4, X5)| by geometric considerations € may again be chosen to be
F e M.

Now suppose&; 0 does not intersect;xs. Defined to be the distance from to the
intersection point betweegi and a line passing throughandxs when|xss;| = |X3S|,
(figure 9).

If |x381] > d = (c0s525°/cos675°) - X381 = (1.5907703..). |X3%| (i.e. in
this situationxs must lie aboveay’.), then the shortest distance betwegrand x;$;
is at mostd - tan 30.|x3s,|/(tan30 + 1) = (0.5822623..). |X3S1| < [X31|. Thus
|Q(X1, X2, X3)| = |Q(X1, X2, X5)| SOG’ may be chosen to bie € M.

Now supposeqs; < d. If xs lies belowq’ theno must also lie belowg’. Letu
be the point of intersection of;s; and a line througlo andxs. Then clearly|xzo| >
uo| > |s1Xs| + |X50| > [X1Xs5] + |X50]. ThusQ(Xz, X4, X5) may again be replaced by
the shorteiQ(x1, X4, X5) andG’ may be chosen to be € M.

If x5 lies abovey’ then there are two situations.

If |X1Xs| < |x3S1| then replaceQ(x1, X2, X3) by the shortelQ(xy, X2, X5) and choose
G’ to beE € M.

If [X1Xs| > |X3S1| then|x;S;:| can be at mostd — |X3S;|) = (0.5907703..).|X3S,|.
Note that the angle betweetixs andq’ at x; is at most the angle thagx, is with
g’ and is less than 90(figure 10). Lew’ be the intersection point betwegys, and
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Figure 10 The angle betweexy x5 andq’ atx;.

a line passing througbandxs. Then the angle betweero andq'’ is also less than
90° and|x30| > |U'0|] = |U'Xs| + |X50| > |X1Xs| + |X50|. ThereforeQ(Xs, X4, Xs)
may be replaced by the short@(x;, X4, Xs) andG’ may be chosen to bE € M.
Similarly if u’ is the intersection point ofss; and a line passing throughandxs
then|xz0| > |U'0| > |s1X5| + |[X50] > |X1Xs5| + |Xs0] and G’ may be chosen to be
F € M again.

(€) |s2X3] = |s1X3| - 2 cos 78 and bothQ-components o6 are full.

If x5 lies insideC’ then|Q(Xq, X2, X5)| < |Q(X1, X2, X3)| SO G’ may be chosen to be
E e M.

If x5 lies outsideC’ then ass; lies onC’, xs lies belowl, and|s;xz| > /2 - |s1x3]. Let
w be the intersection point gfand a line passing through ands;, (figure 7). Then
30| = |Q(Xa, X4, X5)| = [S2Xa| + |SpXa| + [SX5| > (2€0S 75 + V/2) - [s1X3| >
|Xsw|. Thuso must lie belowq. The proof may now follow similarly to that of (b.iv).

(d) |s1%3] - 2€0S 78 > [SpX3].

If [s1x3| - 2€0S 75 < |SpX3| at pp thenp] can always be chosen to satisfy one of the
conditions (a), (b), or (c) for some> 1. Ifatp,, |S1X3| - 2€0S 78 > |$;X3], thenitonly
needs to be shown th& cannot be minimal apy for & < 75°. Note that|s;x;| > 0.
Thus if Xs lies in or onC’ thenLg > Lg for G’ = E € M. If X5 lies outsideC’ then
sinces, lies insideC’, xs must lie belowl . Note also that as it only needs to be shown
thatG is not minimal atp, there is now not the restriction of examining networks only
from M.

Thus it will be apparent thdk; xs| is strictly less than eithds; x;| or |$:xs]. If the
former occurs the® is longer thar{xox3, Q(Xs, X4, Xs), X1 X5}, and if the latter occurs
thenG is longer thanx;Xs, Q(X1, X2X3), X3Xa}.
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This completes the proof of the third case.
Thus sincgT/G)UG’ isaTltreeand s < Lg, [(T/G)UG’| < |T|and sol cannot
be minimal. O

Remark Note that as the proof was by contradiction method it is clear that the result is
best possible. i.e. a T1 network with any angle less tharc@Bnot be minimal.
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