A 75° Angle Constraint for Plane Minimal T1 Trees

T. COLE
Department of Electronic and Electrical Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152, Japan

Received April 5, 1996; Revised January 11, 1999; Accepted January 18, 1999

Abstract

In this paper it is shown that the minimum angle between any 2 edges of an Euclidean plane minimal T 1 tree, or 3-size Steiner tree, is at least 75°.

Keywords: Steiner minimal tree, T1 tree, Q-component

Introduction

Let $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ denote a finite collection of n Euclidean plane (regular points). A Steiner minimal tree SMT is a shortest length network interconnecting X_{n} where (1) all angles between edges are at least 120° and (2) there may be extra points, called Steiner points. It is called full if there are exactly $n-2$ Steiner points and all edges meet at exactly 120°. The underlying graph of a Steiner tree is called the topology. A T1 tree, or 3-size Steiner tree (Du et al., 1991), interconnecting X_{n} consists of spanning edges and minimal Steiner trees that interconnect 3 regular points, called Q-components.

A minimal (shortest length) T1 tree may contain edges meeting at angles less than 120° and it is conjectured that $L_{\mathrm{SMT}} / L_{\mathrm{T} 1} \geq 0.93185 \ldots$ where L_{SMT} is the length of a Steiner minimal tree and $L_{\mathrm{T} 1}$ is the length of a minimal T 1 tree. The value $0.93185 \ldots$ may be obtained from 4 points lying as the corners of a square. In this paper it is shown that the angle between any 2 edges of a minimal T 1 tree must be least 75°.

The variational approach

For a full discussion see Rubinstein and Thomas (1991). Let $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be n Euclidean plane points and G and G^{\prime} be two separate trees each interconnecting X_{n} with G consisting of k edges. Also suppose G and G^{\prime} have length L_{G} and $L_{G^{\prime}}$ respectively. Let $\rho=L_{G} / L_{G^{\prime}}$ be defined as a $\rho=R^{k} \rightarrow R$ function over the domain Δ of the edge lengths of G. If $\inf \rho=\rho_{o}$, then the first derivative $D_{\rho}(\boldsymbol{v})$ of ρ in the direction of a vector v is $\frac{\dot{L}_{G^{\prime}}}{L_{G}}\left(\frac{\dot{L}_{G}}{\dot{L}_{G^{\prime}}}-\rho_{o}\right)$. Thus if $\dot{L}_{G}<(>) 0$ and $\dot{L}_{G} / \dot{L}_{G^{\prime}}>(<) 0$ then $D_{\rho}(\boldsymbol{v})<(>) 0$.

Theorem 1. Let $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ denote a finite collection of n Euclidean plane points and suppose T is a minimal $T 1$ tree interconnecting X_{n}. Then any two edges of T meet at an angle of at least 75°.

Before proving this theorem the following lemmas will be considered.

Lemma 1. Let $x_{2}^{\prime}, x_{3}, x_{4}^{\prime}, x_{5}^{\prime}$ be the corners of a square such that x_{2}^{\prime} lies at the "origin", x_{3} lies on the "positive y-axis" and x_{5}^{\prime} lies on the "positive x-axis". Let $|\mid$ be the length function. As shown in figure 1 , let b be the third point of the equilateral triangle $\Delta b x_{4}^{\prime} x_{5}^{\prime}, l_{U}$ be a line passing through $x_{3} x_{4}^{\prime}, I_{L}$, be a line passing through $x_{2}^{\prime} x_{5}^{\prime}, l^{\prime}$ be a line passing through x_{3} and b, C^{\prime} be a circular arc of radius $\left|x_{2}^{\prime} x_{3}\right|$ centered at x_{2}^{\prime}, p be the intersection point of C^{\prime} and $l^{\prime}, \Delta x_{4} x_{5}$ o be an equilateral triangle of side length at most $\left|x_{3} o\right|$ such that

$\delta<0$

$\delta=0$

$\delta>0$

Figure 1. The positioning of $\Delta x_{4} x_{5} o$.
o lies on l^{\prime} between b and p, x_{4}^{\prime} lies above l^{\prime}, and x_{5}^{\prime} lies below l^{\prime} and outside C^{\prime}. Also let δ be the angle measured clockwise at x_{4} from a line parallel with $x_{2}^{\prime} x_{3}$ to $x_{4} x_{5}$. Then
(i) if $x_{4} x_{5}$ is parallel to $x_{2}^{\prime} x_{3}(i . e . ~ \delta=0)$ then x_{4} lies below l_{U}.
(ii) if x_{4} lies above l_{U} then $\delta \geq 0$.

Proof: Let q^{\prime} be a line passing through $x_{4}^{\prime} x_{5}^{\prime}$.
(i) If x_{5} lies on the right hand side of q^{\prime} then clearly x_{4} lies below l_{U}. If x_{4} lies on the left hand side of q^{\prime} then let z_{o} be the point of intersection of l^{\prime} and $x_{4}^{\prime} x_{5}^{\prime}$. Then $\left|z_{o} x_{5}^{\prime}\right| /\left|x_{4}^{\prime} x_{5}^{\prime}\right|=\cos 30^{\circ} \cdot \tan 15^{\circ}+0.5$. It is only necessary to consider when x_{5} lies on C^{\prime}. Let z be the intersection point of l^{\prime} and $x_{4} x_{5}, w$ be the intersection point of l_{U} and a line passing through x_{4} and x_{5}. If $\theta=\angle x_{5}^{\prime} x_{2}^{\prime} x_{5}$, then

$$
\left|z x_{5}\right|=\left|x_{2}^{\prime} x_{3}\right|\left(1-\sin \theta-\cos \theta \cdot \tan 15^{\circ}\right), \quad\left|w x_{5}\right|=\left|x_{2}^{\prime} x_{3}\right|(1-\sin \theta)
$$

and

$$
\frac{\left|z x_{5}\right|}{\left|w x_{5}\right|}=1-\left(\cos \theta \cdot \tan 15^{\circ}\right) /(1-\sin \theta) \leq(\sqrt{3 / 2}) \cdot \tan 15^{\circ}+0.5=\frac{\left|z_{o} x_{5}^{\prime}\right|}{\left|x_{4}^{\prime} x_{5}^{\prime}\right|}
$$

for $0^{\circ} \leq \theta \leq 60^{\circ}$. Thus X_{4} must lie below l_{U}. Note that at $\theta=60^{\circ}, p=x_{5}$.
(ii) If x_{4} lies on the right hand side of q^{\prime} then $\delta>0$. If x_{4} lies on the left hand side of q^{\prime} then suppose x_{4} lies above l_{U} and $\delta<0$. It will be shown that x_{5} lies in C^{\prime}. Note that it is only necessary to consider when x_{4} lies on l_{U}. By definition o lies on l^{\prime}. Thus if $o=b$, then x_{5} will lie inside C^{\prime} on a line, $l^{\prime \prime}, 60^{\circ}$ to l_{L} at x_{5}^{\prime}. (When $x_{4}=x_{3}$ or $x_{4}=x_{4}^{\prime}, x_{5}$ lies on $\left.C^{\prime}\right)$. As o moves along l^{\prime} toward p, x_{5} will clearly remain inside C^{\prime}. When $x_{5} x_{4}$ is parallel to $x_{2}^{\prime} x_{3}$, i.e. corresponding to when $\delta=0, x_{5}$ will still lie inside as a consequence of (i). Thus δ cannot be less than zero.

Lemma 2. Suppose $X_{4}=\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$ is a set offour Euclidean plane points connected by a minimal T1 tree G consisting of the spanning edge $x_{2} x_{3}$ and the full Q-component $Q\left(x_{3}, x_{4}, x_{5}\right)$. Then the angle θ between $x_{2} x_{3}$ and $Q\left(x_{3}, x_{4}, x_{5}\right)$ at x_{3} is at least 75°.

Proof: The aim will be to show that a shorter tree than G exists by replacing one or both components with different components of shorter sum total length. Suppose $x_{2} x_{3}$ and $Q\left(x_{3}, x_{4}, x_{5}\right)$ meet at x_{3} at an angle of $\theta<75^{\circ}$. Let s be the Steiner point of $Q\left(x_{3}, x_{4}, x_{5}\right)$ and o be the third point of the equilateral triangle $\Delta o x_{4} x_{5}$. Then $\left|o x_{3}\right|=\left|x_{3} s\right|+\left|x_{4} s\right|+\left|x_{5} s\right|$ (Melzak, 1961). Now, as defined in Lemma 1, let $x_{2}^{\prime}, x_{4}^{\prime}, x_{5}^{\prime}$ and b be points such that $x_{2}^{\prime}, x_{3}, x_{4}^{\prime}, x_{5}^{\prime}$ form the corners of a square and $x_{4}^{\prime}, x_{5}^{\prime}, b$ form the corners of an equilateral triangle so that b co-incides with o. Note that $\angle b x_{3} x_{2}^{\prime}=75^{\circ}$. Let C be a circular arc of radius $\left|x_{3} b\right|$ centered at b, and define $l_{\mathrm{U}}, l_{\mathrm{L}}, l^{\prime}, C^{\prime}$, and δ as in Lemma 1. There are a number of situations to consider.
(a) x_{2} lies strictly inside the curve C and $x_{2} b$ does not intersect $x_{4} x_{5}$. Let u be the intersection point of $x_{2} x_{3}$ and a line passing through x_{5} and o (figure 2). Clearly $\left|x_{3} o\right|>|u o|$

Figure 2. The positioning of x_{2}.
so $L_{G}=\left|x_{2} x_{3}\right|+\left|Q\left(x_{3}, x_{4}, x_{5}\right)\right|>\left|x_{2} x_{3}\right|+|u o|=\left(\left|x_{2} x_{3}\right|+\left|u x_{5}\right|\right)+\left|x_{5} o\right| \geq$ $\left|Q\left(x_{2}, x_{3}, x_{5}\right)\right|+\left|x_{4} x_{5}\right|$. Thus G is not minimal as $\left\{Q\left(x_{2}, x_{3}, x_{5}\right), x_{4} x_{5}\right\}$ is shorter. Note that $Q\left(x_{2}, x_{3}, x_{5}\right)$ may or may not be full.
(b) x_{2} lies strictly inside the curve C and does intersect $x_{4} x_{5}$. In this case $\left|Q\left(x_{3}, x_{4}, x_{5}\right)\right|=$ $\left|x_{3} o\right|>\left|x_{2} o\right|=\left|Q\left(x_{2}, x_{4}, x_{5}\right)\right|$. Therefore $Q\left(x_{3}, x_{4}, x_{5}\right)$ may be replaced by the shorter $Q\left(x_{2}, x_{4}, x_{5}\right)$ which again may or may not be full.
(c) x_{2} lies on or outside the curve C. Note that x_{2} must lie strictly below the line l_{L} else $\theta \geq 75^{\circ}$. If x_{5} lies inside the curve C^{\prime} then $x_{2} x_{3}$ may be replaced by the shorter $x_{2} x_{5}$. This will be apparent as x_{5} will strictly be contained in the circular arc of radius $x_{2} x_{3}$ centered at x_{2}.

Now suppose x_{5} does not lie inside C^{\prime}. If $\delta<0$ then by Lemma 1 , x_{4} must lie strictly below l_{U}.

Consider $G^{\prime}=\left\{x_{4} x_{5}, Q\left(x_{2}, x_{3}, x_{4}\right)\right\}$ (figure 3a). Let s^{\prime} be the Steiner point of $Q\left(x_{2}, x_{3}\right.$, $\left.x_{4}\right), 0<\beta=\angle x_{2}^{\prime}, x_{2}, x_{3}, \beta<\gamma^{\prime \prime}=\angle x_{2}^{\prime}, x_{2}, s^{\prime}$ and assume $\rho^{\prime} L_{G} / L_{G^{\prime}} \leq 1$. Move x_{2} toward x_{2}^{\prime} such that $x_{2}^{\prime} x_{2}$ decreases at a rate of -1 . The $L_{G}=-\cos \beta<-\cos \gamma^{\prime \prime}=$ $\dot{L}_{G^{\prime}}<0$ so $\dot{L}_{G} / \dot{L}_{G^{\prime}}>1$ and $D_{\rho^{\prime}}(\boldsymbol{v})<0$. Thus the ratio ρ^{\prime} will decrease. Similarly if $\alpha=\angle s, x_{5}, x_{4}$ then move x_{5} toward s so that $\dot{L}_{G}=-1<-\cos \alpha=\dot{L}_{G}^{\prime}<0$ to again give $\dot{L}_{G} / \dot{L}_{G^{\prime}}>1$ and $D_{\rho^{\prime}}(\boldsymbol{v})<0$. Note too that as b is fixed, o will move along l^{\prime} toward x_{3} and δ will increase. When $x_{2}=x_{2}^{\prime}$ and $\delta=0, x_{3}$ and x_{2} lie on l_{U} and l_{L} respectively and x_{4} and x_{5} both lie between l_{U} and l_{L}. Note here that x_{5} may or may not now lie inside $C^{\prime \prime}$.

Let $w_{2}, w_{3}, x_{4}, x_{5}$ be the four points of a rectangle such that w_{3} lies on l^{\prime}. (figure 3 b) and note that as x_{4} lies strictly below $l_{\mathrm{U}}, w_{3} \neq x_{3}$.

Move x_{3} toward w_{3} along l^{\prime} and x_{2} toward w_{2} at such rates so that $x_{2} x_{3}$ is always perpendicular to l_{U} and l_{L}. Let $\varnothing=\angle w_{3}, x_{3}, s^{\prime}$ and $\omega=\angle w_{2}, x_{2}, x_{3}$. Then $\dot{L}_{G}=-1-$ $\cos 75^{\circ}-\sin 75^{\circ} \cdot \cot \omega$, and $\dot{L}_{G^{\prime}}=-\cos \varnothing-\sin 75^{\circ} \cdot \operatorname{cosec} \omega \cdot \cos \left(\omega-\varnothing+15^{\circ}\right)$.

Consider $f(\omega, \varnothing)=-\dot{L}_{G}+L_{G^{\prime}}$. Then

$$
f(\omega, \varnothing)=1+\cos 75^{\circ}-\cos \varnothing+\sin 75^{\circ} \cdot\left\{\frac{\left(\cos \omega \cdot \cos \left(\omega-\varnothing+15^{\circ}\right)\right)}{\sin \omega}\right\}
$$

(a)

(b)

Figure 3. Regular point movement toward rectangular configuration.
and

$$
\delta f(\omega, \varnothing) / \delta \omega=-\sin 75^{\circ} \cdot\left\{\frac{\left(1-\cos \left(15^{\circ}-\varnothing\right)\right)}{\sin ^{2} \omega}\right\} \leq 0
$$

for $0<\omega \leq 90^{\circ}$.
Thus $f(\omega, \varnothing) \geq f(90, \varnothing)=1+\cos 75^{\circ}-\cos \varnothing-\sin 75^{\circ} \cdot \cos \left(105^{\circ}-\varnothing\right)$. The unique minimum to this equation, for $0^{\circ}<\varnothing<60^{\circ}$ occurs when $\varnothing=51.206 . .^{\circ}$

So $f(\omega, \varnothing) \geq f\left(90^{\circ}, 51.206 ..\right)=0.0617339 \ldots>0$ giving $\dot{L}_{G} / \dot{L}_{G^{\prime}}>1$ and a decreasing ρ^{\prime}. When $w_{2}=x_{2}$ and $w_{3}=x_{3}, L_{G}$ and $L_{G^{\prime}}$ may be calculated directly and both have the same value. Therefore a contradiction arises as L_{G} cannot be shorter than $L_{G^{\prime}}$.

If $\delta \geq 0$ then x_{5} must lie above l_{L} else $\delta<0$ or x_{5} lies inside C^{\prime}. Consider $G^{\prime}=$ $\left\{x_{4} x_{5}, Q\left(x_{2}, x_{3}, x_{5}\right)\right\}$ and assume $\rho^{\prime}=L_{G} / L_{G^{\prime}} \leq 1$. Let s^{\prime} be the Steiner point of $Q\left(x_{2}, x_{3}\right.$,

A

D

B

E

C

F
(b)

Figure 4. Defined collection of 6 T 1 trees.
x_{5}). It is now possible to follow a similar procedure as was used in the previous situation when $\delta<0$ to arrive at the same contradiction that L_{G} cannot be shorter than $L_{G^{\prime}}$.

Definition 1. Suppose $X_{5}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$, a collection of 5 Euclidean plane points, is interconnected by a T1 tree G consisting of two full Q-components $Q\left(x_{1}, x_{2}, x_{3}\right)$ and $Q\left(x_{3}, x_{4}, x_{5}\right)$ with Steiner points s_{1} and s_{2} respectively (figure 4a). Then define $M=$ $\{A, B, C, D, E, F\}$ to be the set of six T1 trees (figure 4b) as follows.

$$
\begin{aligned}
& A=\left\{x_{1} x_{2}, Q\left(x_{2}, x_{3}, x_{4}\right), x_{4} x_{5}\right\} \\
& B=\left\{x_{1} x_{2}, Q\left(x_{2}, x_{3}, x_{5}\right), x_{4} x_{5}\right\} \\
& C=\left\{x_{1} x_{2}, Q\left(x_{1}, x_{3}, x_{4}\right), x_{4} x_{5}\right\} \\
& D=\left\{x_{1} x_{2}, Q\left(x_{1}, x_{3}, x_{5}\right), x_{4} x_{5}\right\} \\
& E=\left\{Q\left(x_{1}, x_{2}, x_{5}\right), Q\left(x_{3}, x_{4}, x_{5}\right)\right\} \\
& F=\left\{Q\left(x_{1}, x_{2}, x_{3}\right), Q\left(x_{1}, x_{4}, x_{5}\right)\right\}
\end{aligned}
$$

Definition 2. Suppose $X_{5}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$, a collection of five Euclidean plane points, is interconnected by a T1 tree G consisting of two full Q-components $Q\left(x_{1}, x_{2}, x_{3}\right)$ and
$Q\left(x_{3}, x_{4}, x_{5}\right)$, with Steiner points S_{1} and S_{2} respectively. Define Δ to be the configuration space consisting of the six non negative edge lengths of G. i.e. $\Delta=\left\{s_{1} x_{1}, s_{1} x_{2}, s_{1} x_{3}, s_{2} x_{3}\right.$, $\left.s_{2} x_{4}, s_{2} x_{5}\right\}$ such that the sum of the lengths is equal to 1 and the angle between $s_{1} x_{3}$ and $s_{2} x_{3}$ is fixed and is at most 75°.

Lemma 3. The length of any $T 1$ tree with respect to Δ is a convex function.
Proof: The general result is proved by Du et al. (1991). (As all the angles and the topology of G are fixed, a point of $\Delta \subset R^{5}$ will determine the configuration of the regular points. The length of any component of a T1 network interconnecting G can then be written as a vector sum and its length shown to be a convex function.)

Lemma 4. Suppose $X_{5}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ is a collection of five Euclidean plane points lying in some configuration such that
(1) The $T 1$ tree G (with length L_{G}) interconnecting X_{5} consisting of two full Q-components $Q\left(x_{1}, x_{2}, x_{3}\right)$ and $Q\left(x_{3}, x_{4}, x_{5}\right)$ exists and is minimal;
(2) The angle θ between the two edges $s_{1} x_{3}$ and $s_{2} x_{3}$ is strictly less than 75°.

Suppose the maximum value of $L_{G} / L_{G^{\prime}}$ for all $G^{\prime} \in M$ at the configuration is ρ^{*}. Then there exists another configuration of X_{5} such that G, consisting of the two full Q-components $Q\left(x_{1}, x_{2}, x_{3}\right)$ and $Q\left(x_{3}, x_{4}, x_{5}\right)$, exists, $\theta=75^{\circ}$, and $L_{G} / L_{G^{\prime}} \leq \rho^{*}$.

Proof: As G is assumed to be minimal at the initial configuration, $\rho^{*} \leq 1$.
Note that if a line $x_{3} x_{1}$ intersects $x_{5} s_{2}$ then G cannot be minimal as $Q\left(x_{1}, x_{2}, x_{3}\right)$ may be replaced by a shorter $Q\left(x_{1}, x_{2}, x_{5}\right)$ giving $L_{G} / L_{G^{\prime}}>1$ with $G^{\prime}=E \in M$. Similarly if a line $x_{3} x_{5}$ intersects $s_{1} x_{1}$ then G cannot be minimal as $Q\left(x_{3}, x_{4}, x_{5}\right)$ may be replaced by a shorter $Q\left(x_{1}, x_{4}, x_{5}\right)$ giving $L_{G} / L_{G^{\prime}}>1$ with $G^{\prime}=F \in M$.

Thus suppose $x_{3} x_{1}$ does not intersect $x_{5} s_{2}$ and $x_{3} x_{5}$ does not intersect $s_{1} x_{1} . L_{G}$ remains constant if $Q\left(x_{1}, x_{2}, x_{3}\right)$ is pivoted about x_{3} to increase θ and $L_{G^{\prime}}$ does not decrease for any $G^{\prime} \in M$. Thus $L_{G} / L_{G^{\prime}}$ will decrease for any $G^{\prime} \in M$ and so $L_{G} / L_{G^{\prime}} \leq \rho^{*}$ for any $G^{\prime} \in M$.

Remark. If $L_{G^{\prime}}$ remains constant for some $G^{\prime} \in M$ when θ is increased, then $L_{G} / L_{G^{\prime}}<1$. This can be seen for each $G^{\prime} \in M$. For example, suppose $G^{\prime}=A \in M$. If $Q\left(x_{2}, x_{3}, x_{4}\right)$ is full then $L_{G^{\prime}}$ must strictly increase. If $Q\left(x_{2}, x_{3}, x_{4}\right)=\left\{x_{2} x_{3}, x_{3} x_{4}\right\}$ then $L_{G^{\prime}}$ remains constant. However in this situation it is obvious that $L_{G} / L_{G^{\prime}}<1$. Note that $Q\left(x_{2}, x_{3}, x_{4}\right)$ cannot be $\left\{x_{2} x_{3}, x_{2} x_{4}\right\}$ or $\left\{x_{3} x_{4}, x_{2} x_{4}\right\}$. Thus, by similar consideration of all $G^{\prime} \in M$, it will be clear that when $\theta=75^{\circ}, L_{G} / L_{G^{\prime}}<1$ for all $G^{\prime} \in M$.

Proof of Theorem 1: Consider two edges of T meeting at a common vertex with the angle between them strictly less than 75°. By definition each edge must either be a spanning edge or belong to some full Q-component. Let the two components be denoted by G. The proof will aim to show that a shorter network may be obtained by removing one or both components of G and by replacing them with different components of shorter sum length. There are 3 cases to consider.

First Case. G consists of two spanning edges. Clearly the edges may be replaced by a full Q-component of strictly shorter length.

Second Case. G consists of one spanning edge and one full Q-component. By Lemma 2 there exist components of strictly shorter sum length which may be used as replacements.

Third Case. G consists of two full Q-components. In this case, the proof follows the ideas of Du and Hwang (1992).

Without loss of generality suppose G interconnects $X_{5}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and G consists of the two Q-components $Q\left(x_{1}, x_{2}, x_{3}\right)$ and $Q\left(x_{3}, x_{4}, x_{5}\right)$ with the angle θ between $s_{1} x_{3}$ and $s_{2} x_{3}\left(s_{1}, s_{2}\right.$ the Steiner points of $Q\left(x_{1}, x_{2}, x_{3}\right)$ and $Q\left(x_{3}, x_{4}, x_{5}\right)$ respectively) at x_{3} strictly less than 75°. Note that as T is minimal G must also be minimal. It is now only necessary to restrict attention to G. Consider $G^{\prime} \in M$. Then $L_{G} / L_{G^{\prime}} \leq 1$ and by the Remark following Lemma 4 a minimum value of $L_{G} / L_{G^{\prime}}$ strictly less than 1 for all $G^{\prime} \in M$ will occur for some configuration of X_{5} when $\theta=75^{\circ}$.

Consider the configuration space Δ as defined in Definition 2 and set $\theta=75^{\circ}$. Then there exists some interior point $p_{o} \in \Delta$ such that G is a minimal T1 tree with $\left|x_{3} s_{1}\right| \geq\left|s_{2} x_{3}\right|>0$ (figure 5b).

Figure 5. a) Square configuration of regular points, b) $\left|x_{3} s_{1}\right| \geq\left|s_{2} x_{3}\right|>0$.

Let p_{1} correspond to a configuration of X_{5} such that

$$
\begin{aligned}
\left|s_{2} x_{4}\right|=\left|s_{2} x_{5}\right| & =0 \\
\frac{\left|s_{2} x_{3}\right|}{\left|x_{3} x_{4}\right|} & =\frac{1}{\left(1+\frac{2}{\sqrt{3}}\left(\sqrt{2}+\sin 15^{\circ}\right)\right)} \\
\frac{\left|s_{1} x_{2}\right|}{\left|x_{3} x_{4}\right|} & =\frac{\left(2 \sin 15^{\circ}\right)}{\left(\sqrt{3}\left(1+\frac{2}{\sqrt{3}}\left(\sqrt{2}+\sin 15^{\circ}\right)\right)\right)}
\end{aligned}
$$

and

$$
\frac{\left|s_{1} x_{1}\right|}{\left|x_{3} x_{4}\right|}=\frac{\left|s_{1} x_{3}\right|}{\left|x_{3} x_{4}\right|}=\frac{\sqrt{2}}{\left(\sqrt{3}\left(1+\frac{2}{\sqrt{3}}\left(\sqrt{2} \sin 15^{\circ}\right)\right)\right)}
$$

i.e. when $s_{2}=x_{4}=x_{5}$ and x_{1}, x_{2}, x_{3}, and $x_{4}\left(=x_{5}\right)$ lie as the corners of a square (figure 5 a). Note that for any $G^{\prime} \in M, L_{G} / L_{G^{\prime}}=1$ at p_{1}.

Now consider the path $(1-\lambda) p_{1}+\lambda p_{o} \in \Delta$ for $\lambda \geq 0$. Note that since $\left|s_{2} x_{4}\right|=$ $\left|s_{2} x_{5}\right|=0$ at p_{1} but $\left|s_{2} x_{4}\right|>0$ and $\left|s_{2} x_{5}\right|>0$ at p_{o}, some edge of G must decrease at a constant rate as λ increases. Let $r=\left|s_{1} x_{3}\right| /\left|s_{2} x_{3}\right|$. Then $r(\lambda)$ is an increasing function. (At $p_{1}, r=\sin 45^{\circ} / \sin 60^{\circ}<1$, and at $\left.p_{o}, r \geq 1\right)$. Thus there will exist some $\lambda>1$ such that one of the following occurs.
(a) G intersects itself.
(b) $\left|s_{1} x_{3}\right| \cdot 2 \cos 75^{\circ} \leq\left|s_{2} x_{3}\right| \leq\left|s_{1} x_{3}\right|$ and at least one Q-component of G is not full.
(c) $\left|s_{2} x_{3}\right|=\left|s_{1} x_{3}\right| \cdot 2 \cos 75^{\circ}$ and both Q-components of G are full.
(d) $\left|s_{1} s_{3}\right| \cdot 2 \cos 75^{\circ}>\left|s_{2} x_{3}\right|$

Let $p_{1}^{\prime} \in \Delta$ correspond to the smallest $\lambda>1$ for which one of the above occurs. Then to prove Theorem 1 it is necessary to find a T1 tree $G^{\prime} \neq G$ such that $L_{G} / L_{G^{\prime}} \geq 1$ at both p_{1} and $p_{1}^{\prime} \in \Delta$. It will then follow that $L_{G} / L_{G^{\prime}} \geq 1$ at p_{o} by the convexity of $L_{G^{\prime}}$ and hence a contradiction that G is minimal.

Each situation is considered separately.
(a) G intersects itself. There are two possibilities.

If $s_{2} x_{5}$ intersects $s_{1} x_{1}$ (figure 6a) then choose $G^{\prime}=\left\{Q\left(x_{1}, x_{2}, x_{5}\right), Q\left(x_{3}, x_{4}, x_{5}\right)\right\}=$ $E \in M$. Since $\left|Q\left(x_{1}, x_{2}, x_{5}\right)\right| \leq\left|Q\left(x_{1}, x_{2}, x_{3}\right)\right|$ at $p_{1}^{\prime}, L_{G} / L_{G^{\prime}} \geq 1$, at both p_{1} and p_{1}^{\prime}. Thus $L_{G} / L_{G^{\prime}} \geq 1$ at p_{o} by the convexity of G^{\prime} and so contradicting the minimality of G.
If $s_{1} x_{1}$ intersects $s_{2} x_{5}$ (figure 6b) then choose $G^{\prime}=\left\{Q\left(x_{1}, x_{2}, x_{3}\right), Q\left(x_{1}, x_{4}, x_{5}\right)\right\}=$ $F \in M$ and a similar argument follows.
(b) $\left|s_{1} x_{3}\right| \cdot 2 \cos 75^{\circ} \leq\left|s_{2} x_{3}\right| \leq\left|s_{1} x_{3}\right|$ and at least one Q-component of G is not full. In this case p_{1}^{\prime} lies on the boundary of Δ. Assume G does not intersect itself. Note that both $x_{4} s_{2}$ and $x_{5} x_{2}$ have non zero length at p_{1}^{\prime}, and $\left|s_{1} x_{3}\right| \geq\left|x_{3} s_{2}\right|>0$ also at p_{1}^{\prime}. Thus only $x_{1} s_{1}$ or $x_{2} s_{1}$ can have zero length at p_{1}^{\prime}.

(a)

(b)

Figure 6. a) $s_{2} x_{5}$ intersecting $s_{1} x_{1}$, b) $s_{1} x_{1}$ intersecting $s_{2} x_{5}$.

The problem can now be considered as a geometric problem. Let $x_{4}^{\prime}, x_{5}^{\prime}$ be points such that $s_{1}, x_{3}, x_{4}^{\prime}, x_{5}^{\prime}$ form the corners of a square. Also let o^{\prime} be the third point of the equilateral triangle $\Delta o^{\prime} s_{1} x_{3}, C^{\prime}$ be the circular arc of radius $\left|s_{1} x_{3}\right|$ at S_{1}, o be the third point of the equilateral triangle $\Delta o x_{4} x_{5}, q$ be a line passing through o^{\prime} and the midpoint of $x_{4}^{\prime} x_{5}^{\prime}, q^{\prime}$ be a line passing through o^{\prime} and S_{1}, l_{U} be a line passing through x_{3} and $x_{4}^{\prime}, l_{\mathrm{L}}$. be a line passing through $s_{1} x_{5}^{\prime}$, and define δ be the angle measured clockwise at x_{4} from a line parallel with $x_{4}^{\prime} x_{5}^{\prime}$ to $x_{4} x_{5}$. Note that if $\left|s_{2} x_{3}\right|=\left|s_{1} x_{3}\right| \cdot 2 \cos 75^{\circ}$ then s_{2} will lie on C^{\prime} (figure 7).

There are two situations to consider.
(b.1) If x_{5} lies inside C^{\prime} then $\left|s_{1} x_{5}\right| \leq\left|s_{1} x_{3}\right|$ and $\left|Q\left(x_{1}, x_{2}, x_{5}\right)\right| \leq\left|Q\left(x_{1}, x_{2}, x_{3}\right)\right|$. Thus G^{\prime} can be chosen to be $E \in M$ to give $L_{G} / L_{G^{\prime}} \geq 1$ and a contradiction that G is minimal at p_{o}.
(b.2) If x_{5} lies outside C^{\prime} then there are a number of situations to consider.

Figure 7. The location of x_{5}.
(i) x_{4} lies below l_{U} and x_{5} lies above l_{L}. If $\left|x_{1} s_{1}\right|=0$ and $\delta \leq 0$ then choose G^{\prime} to be $\left\{x_{1} x_{2}, Q\left(x_{1}, x_{3}, x_{4}\right), x_{4} x_{5}\right\}=C \in M$. If x_{4} lies strictly below l_{U} then follow similarly the procedure used in Lemma 2 to show that $\left|s_{1} x_{3}\right|+$ $\left|Q\left(x_{3}, x_{4}, x_{5}\right)\right| \geq\left|x_{4} x_{5}\right|+\left|Q\left(x_{1}, x_{3}, x_{4}\right)\right|$ to give the contradiction. If x_{4} lies l_{U} then it may be shown again that $\left|s_{1} x_{3}\right|+\left|Q\left(x_{3}, x_{4}, x_{5}\right)\right| \geq\left|x_{4} x_{5}\right|+$ $\left|Q\left(x_{1}, x_{3}, x_{4}\right)\right|$ by decreasing the edges $s_{1} x_{3}=x_{1} x_{3}$ at $s_{1}=x_{1}$ or decreasing $s_{2} x_{5}$ at x_{5} until $x_{1}, x_{3}, x_{4}, x_{5}$ lie as the corners of a rectangle from which $L_{G}=L_{G^{\prime}}$ to give the contradiction of the minimality of G.

Similarly if
$\left|x_{2} s_{1}\right|=0$ and $\delta \leq 0$ then choose G^{\prime} to be $\left\{x_{1} x_{2}, Q\left(x_{2}, x_{3}, x_{4}\right), x_{4} x_{5}\right\}=A \in M$.
$\left|x_{1} s_{1}\right|=0$ and $\delta>0$ then choose G^{\prime} to be $\left\{x_{1}, x_{2}, Q\left(x_{1}, x_{3}, x_{5}\right), x_{4} x_{5}\right\}=$ $D \in M$.
$\left|x_{2} s_{1}\right|=0$ and $\delta>0$ then choose G^{\prime} to be $\left\{x_{1} x_{2}, Q\left(x_{2}, x_{3}, x_{5}\right), x_{4} x_{5}\right\}=B \in M$.
(ii) x_{4} lies above l_{U} and x_{5} lies above l_{L}. In this situation $\delta>0$ so if $\left|x_{1} s_{1}\right|=0$ choose G^{\prime} to be $D \in M$, and if $\left|x_{2} s_{1}\right|=0$ choose G^{\prime} to be $B \in M$ and proceed as in (i).
(iii) x_{4} lies below l_{U} and x_{5} lies below l_{L}. If $\delta \leq 0$ and $\left|x_{1} s_{1}\right|=0$ choose G^{\prime} to be $C \in M$, and if $\delta \leq 0$ and $\left|x_{2} s_{1}\right|=0$ choose G^{\prime} to be $A \in M$. Move x_{5} toward s_{2} to decrease $L_{G} / L_{G^{\prime}}$ until $\delta=0$. If x_{5} lies above l_{L} when $\delta=0$ then proceed as in Lemma 2 to obtain the contradiction. If x_{5} lies below l_{L} when $\delta=0$ then it is not possible to proceed as in Lemma 2. It will therefore be necessary to re-examine the problem. Note here that o lies below q. This situation will now be examined in (iv).
If $\delta>0$ then o must lie below q. This situation will also now be examined in (iv).
(iv) x_{4} lies above l_{U} and x_{5} lies below l_{L}. In this situation o lies below q so $\left|x_{3} o\right| \geq\left|s_{1} o\right|$.

First suppose $\left|x_{1} s_{1}\right|=0$, (figure 8a). If $s_{1} o$ intersects $x_{4} x_{5}$ then $\mid Q\left(x_{1}, x_{4}\right.$, $\left.x_{5}\right)\left|\leq\left|Q\left(x_{3}, x_{4}, x_{5}\right)\right|\right.$ so choose G^{\prime} to be $F \in M$. If $s_{1} o$ does not intersect $x_{4} x_{5}$ then note that o must also lie below l_{L}. Let u be the point of intersection of $s_{1} x_{3}$ and a line passing through $o x_{5}$. Then clearly $\left|x_{3} o\right|>|u o| \geq\left|x_{1} x_{5}\right|+$

Figure 8. a) $\left.\left|x_{1} s_{1}\right|=0, b\right)\left|x_{2} s_{1}\right|=0$.

Figure 9. $x_{1} o$ does not intersect $x_{4} x_{5}$.
$\left|x_{5} o\right|$. Thus $Q\left(x_{3}, x_{4}, x_{5}\right)$ may again be replaced by the shorter $Q\left(x_{1}, x_{4}, x_{5}\right)$ and G^{\prime} may be chosen to be $F \in M$.

Next, suppose $\left|x_{2} s_{1}\right|=0$, (figure 8b). If $x_{1} o$ intersects $x_{4} x_{5}$ then $\left|Q\left(x_{1}, x_{4}, x_{5}\right)\right| \leq$ $\left|s_{1} o\right| \leq\left|Q\left(x_{3}, x_{4}, x_{5}\right)\right|$ by geometric considerations so G^{\prime} may again be chosen to be $F \in M$.

Now suppose $x_{1} o$ does not intersect $x_{4} x_{5}$. Define d to be the distance from s_{1} to the intersection point between q^{\prime} and a line passing through s_{2} and x_{5} when $\left|x_{3} s_{2}\right|=\left|x_{3} s_{1}\right|$, (figure 9).

If $\left|x_{1} s_{1}\right| \geq d=\left(\cos 52.5^{\circ} / \cos 67.5^{\circ}\right) \cdot\left|x_{3} s_{1}\right|=(1.5907703 \ldots) .\left|x_{3} s_{1}\right|$ (i.e. in this situation x_{5} must lie above q^{\prime}.), then the shortest distance between x_{5} and $x_{1} s_{1}$ is at most $d \cdot \tan 30^{\circ} .\left|x_{3} s_{1}\right| /\left(\tan 30^{\circ}+1\right)=(0.5822623 \ldots) .\left|x_{3} s_{1}\right|<\left|x_{3} s_{1}\right|$. Thus $\left|Q\left(x_{1}, x_{2}, x_{3}\right)\right| \geq\left|Q\left(x_{1}, x_{2}, x_{5}\right)\right|$ so G^{\prime} may be chosen to be $E \in M$.

Now suppose $x_{1} s_{1}<d$. If x_{5} lies below q^{\prime} then o must also lie below q^{\prime}. Let u be the point of intersection of $x_{3} s_{1}$ and a line through o and x_{5}. Then clearly $\left|x_{3} o\right|>$ $|u o| \geq\left|s_{1} x_{5}\right|+\left|x_{5} o\right| \geq\left|x_{1} x_{5}\right|+\left|x_{5} o\right|$. Thus $Q\left(x_{3}, x_{4}, x_{5}\right)$ may again be replaced by the shorter $Q\left(x_{1}, x_{4}, x_{5}\right)$ and G^{\prime} may be chosen to be $F \in M$.

If x_{5} lies above q^{\prime} then there are two situations.

If $\left|x_{1} x_{5}\right| \leq\left|x_{3} s_{1}\right|$ then replace $Q\left(x_{1}, x_{2}, x_{3}\right)$ by the shorter $Q\left(x_{1}, x_{2}, x_{5}\right)$ and choose G^{\prime} to be $E \in M$.
If $\left|x_{1} x_{5}\right|>\left|x_{3} s_{1}\right|$ then $\left|x_{1} s_{1}\right|$ can be at most $\left(d-\left|x_{3} s_{1}\right|\right)=(0.5907703 \ldots) .\left|x_{3} s_{1}\right|$.
Note that the angle between $x_{1} x_{5}$ and q^{\prime} at x_{1} is at most the angle that $x_{5}^{\prime} x_{1}$ is with q^{\prime} and is less than 90°, (figure 10). Let u^{\prime} be the intersection point between $x_{1} s_{1}$ and

Figure 10. The angle between $x_{1} x_{5}$ and q^{\prime} at x_{1}.
a line passing through o and x_{5}. Then the angle between $u^{\prime} o$ and q^{\prime} is also less than 90° and $\left|x_{3} o\right|>\left|u^{\prime} o\right|=\left|u^{\prime} x_{5}\right|+\left|x_{5} o\right|>\left|x_{1} x_{5}\right|+\left|x_{5} o\right|$. Therefore $Q\left(x_{3}, x_{4}, x_{5}\right)$ may be replaced by the shorter $Q\left(x_{1}, x_{4}, x_{5}\right)$ and G^{\prime} may be chosen to be $F \in M$. Similarly if u^{\prime} is the intersection point of $x_{3} s_{1}$ and a line passing through o and x_{5} then $\left|x_{3} o\right|>\left|u^{\prime} o\right| \geq\left|s_{1} x_{5}\right|+\left|x_{5} o\right| \geq\left|x_{1} x_{5}\right|+\left|x_{5} o\right|$ and G^{\prime} may be chosen to be $F \in M$ again.
(c) $\left|s_{2} x_{3}\right|=\left|s_{1} x_{3}\right| \cdot 2 \cos 75^{\circ}$ and both Q-components of G are full.

If x_{5} lies inside C^{\prime} then $\left|Q\left(x_{1}, x_{2}, x_{5}\right)\right| \leq\left|Q\left(x_{1}, x_{2}, x_{3}\right)\right|$ so G^{\prime} may be chosen to be $E \in M$.
If x_{5} lies outside C^{\prime} then as s_{2} lies on C^{\prime}, x_{5} lies below l_{L} and $\left|s_{2} x_{2}\right| \geq \sqrt{2} \cdot\left|s_{1} x_{3}\right|$. Let w be the intersection point of q and a line passing through x_{3} and s_{2}, (figure 7). Then $\left|x_{3} o\right|=\left|Q\left(x_{3}, x_{4}, x_{5}\right)\right|=\left|s_{2} x_{3}\right|+\left|s_{2} x_{4}\right|+\left|s_{2} x_{5}\right|>\left(2 \cos 75^{\circ}+\sqrt{2}\right) \cdot\left|s_{1} x_{3}\right|>$ $\left|x_{3} w\right|$. Thus o must lie below q. The proof may now follow similarly to that of (b.iv).
(d) $\left|s_{1} x_{3}\right| \cdot 2 \cos 75^{\circ}>\left|s_{2} x_{3}\right|$.

If $\left|s_{1} x_{3}\right| \cdot 2 \cos 75^{\circ}<\left|s_{2} x_{3}\right|$ at p_{0} then p_{1}^{\prime} can always be chosen to satisfy one of the conditions (a), (b), or (c) for some $\lambda>1$. If at $p_{o},\left|s_{1} x_{3}\right| \cdot 2 \cos 75^{\circ} \geq\left|s_{2} x_{3}\right|$, then it only needs to be shown that G cannot be minimal at p_{0} for $\theta \leq 75^{\circ}$. Note that $\left|s_{1} x_{1}\right|>0$. Thus if x_{5} lies in or on C^{\prime} then $L_{G}>L_{G^{\prime}}$ for $G^{\prime}=E \in M$. If x_{5} lies outside C^{\prime} then since s_{2} lies inside C^{\prime}, x_{5} must lie below l_{L}. Note also that as it only needs to be shown that G is not minimal at p_{o} there is now not the restriction of examining networks only from M.

Thus it will be apparent that $\left|x_{1} x_{5}\right|$ is strictly less than either $\left|s_{1} x_{1}\right|$ or $\left|s_{2} x_{5}\right|$. If the former occurs then G is longer than $\left\{x_{2} x_{3}, Q\left(x_{3}, x_{4}, x_{5}\right), x_{1} x_{5}\right\}$, and if the latter occurs then G is longer than $\left\{x_{1} x_{5}, Q\left(x_{1}, x_{2} x_{3}\right), x_{3} x_{4}\right\}$.

This completes the proof of the third case.
Thus since $(T / G) \cup G^{\prime}$ is a T1 tree and $L_{G^{\prime}}<L_{G},\left|(T / G) \cup G^{\prime}\right|<|T|$ and so T cannot be minimal.

Remark. Note that as the proof was by contradiction method it is clear that the result is best possible. i.e. a T1 network with any angle less than 75° cannot be minimal.

References

D.Z. Du, Y.J. Zhang, and Q. Feng, "On better heuristic for Eulidean Steiner minimum trees," in Proc. of the 32nd Ann. Symp. on Foundations of Computer Science, 1991, pp. 431-439.
D.Z. Du and F.K. Hwang, "A proof of Gilbert and Pollak's conjecture on the Steiner ratio," Algorithmica, vol. 7, pp. 121-135, 1992.
Z.A. Melzak, "On the problem of Steiner," Canad. Math. Bull., vol. 4, pp. 143-148, 1961.
J.H. Rubinstein and D.A. Thomas, "The calculus of variations and the Steiner problem," Ann. Oper. Res., vol. 33, pp. 481-499, 1991.

