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A 75◦ Angle Constraint for Plane Minimal T1 Trees
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Abstract. In this paper it is shown that the minimum angle between any 2 edges of an Euclidean plane minimal
T1 tree, or 3-size Steiner tree, is at least 75◦.
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Introduction

Let Xn={x1, x2, . . . , xn} denote a finite collection ofn Euclidean plane (regular points).
A Steiner minimal tree SMT is a shortest length network interconnectingXn where (1) all
angles between edges are at least 120◦ and (2) there may be extra points, called Steiner
points. It is called full if there are exactlyn−2 Steiner points and all edges meet at exactly
120◦. The underlying graph of a Steiner tree is called the topology. A T1 tree, or 3-size
Steiner tree (Du et al., 1991), interconnectingXn consists of spanning edges and minimal
Steiner trees that interconnect 3 regular points, calledQ-components.

A minimal (shortest length) T1 tree may contain edges meeting at angles less than 120◦

and it is conjectured thatLSMT/LT1 ≥ 0.93185... whereLSMT is the length of a Steiner
minimal tree andLT1 is the length of a minimal T1 tree. The value 0.93185... may be
obtained from 4 points lying as the corners of a square. In this paper it is shown that the
angle between any 2 edges of a minimal T1 tree must be least 75◦.

The variational approach

For a full discussion see Rubinstein and Thomas (1991). LetXn = {x1, x2, . . . , xn} ben
Euclidean plane points andG andG′ be two separate trees each interconnectingXn with
G consisting ofk edges. Also supposeG andG′ have lengthLG and LG′ respectively.
Let ρ = LG/LG′ be defined as aρ = Rk → R function over the domain1 of the edge
lengths ofG. If infρ = ρo, then the first derivativeDρ(v) of ρ in the direction of a vector
v is L̇G′

LG
( L̇G

L̇G′
− ρo). Thus if L̇G < (>)0 andL̇G/L̇G′ > (<)0 thenDρ(v) < (>)0.

Theorem 1. Let Xn={x1, x2, . . . , xn} denote a finite collection of n Euclidean plane
points and suppose T is a minimal T1 tree interconnecting Xn. Then any two edges of T
meet at an angle of at least75◦.
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Before proving this theorem the following lemmas will be considered.

Lemma 1. Let x′2, x3, x′4, x′5 be the corners of a square such that x′2 lies at the“origin”,
x3 lies on the“positive y-axis” and x′5 lies on the“positive x-axis” . Let | | be the length
function. As shown in figure1, let b be the third point of the equilateral triangle1bx′4x′5, lU
be a line passing through x3x′4, I L , be a line passing through x′2x′5, l

′ be a line passing
through x3 and b, C′ be a circular arc of radius|x′2x3| centered at x′2, p be the intersection
point of C′ and l′,1x4x5o be an equilateral triangle of side length at most|x3o| such that

Figure 1. The positioning of1x4x5o.
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o lies on l′ between b and p, x′4 lies above l′, and x′5 lies below l′ and outside C′. Also letδ
be the angle measured clockwise at x4 from a line parallel with x′2x3 to x4x5. Then
(i) if x4x5 is parallel to x′2x3(i .e. δ = 0) then x4 lies below lU .
(ii) if x4 lies above lU thenδ ≥ 0.

Proof: Let q′ be a line passing throughx′4x′5.

(i) If x5 lies on the right hand side ofq′ then clearlyx4 lies below lU. If x4 lies on
the left hand side ofq′ then letzo be the point of intersection ofl ′ andx′4x′5. Then
|zox′5|/|x′4x′5| = cos 30◦ · tan 15◦ + 0.5. It is only necessary to consider whenx5 lies
on C′. Let z be the intersection point ofl ′ andx4x5, w be the intersection point oflU
and a line passing throughx4 andx5. If θ = 6 x′5x′2x5, then

|zx5| = |x′2x3|(1− sinθ − cosθ · tan 15◦), |wx5| = |x′2x3|(1− sinθ),

and

|zx5|
|wx5| = 1− (cosθ · tan 15◦)/(1− sinθ) ≤ (√3/2

) · tan 15◦ + 0.5= |zox′5|
|x′4x′5|

for 0◦ ≤ θ ≤ 60◦. ThusX4 must lie belowlU. Note that atθ = 60◦, p = x5.
(ii) If x4 lies on the right hand side ofq′ thenδ > 0. If x4 lies on the left hand side of

q′ then supposex4 lies abovelU andδ < 0. It will be shown thatx5 lies in C′. Note
that it is only necessary to consider whenx4 lies onlU. By definitiono lies onl ′. Thus
if o = b, thenx5 will lie inside C′ on a line,l ′′, 60◦ to lL at x′5. (Whenx4 = x3 or
x4 = x′4, x5 lies onC′). As o moves alongl ′ toward p, x5 will clearly remain inside
C′. Whenx5x4 is parallel tox′2x3, i.e. corresponding to whenδ = 0, x5 will still lie
inside as a consequence of (i). Thusδ cannot be less than zero. 2

Lemma 2. Suppose X4 = {x2, x3, x4, x5} is a set of four Euclidean plane points connected
by a minimal T1 tree G consisting of the spanning edge x2x3 and the full Q-component
Q(x3, x4, x5). Then the angleθ between x2x3 and Q(x3, x4, x5) at x3 is at least75◦.

Proof: The aim will be to show that a shorter tree thanG exists by replacing one or
both components with different components of shorter sum total length. Supposex2x3 and
Q(x3, x4, x5)meet atx3 at an angle ofθ < 75◦. Let s be the Steiner point ofQ(x3, x4, x5)

andobe the third point of the equilateral triangle1ox4x5. Then|ox3| = |x3s|+|x4s|+|x5s|
(Melzak, 1961). Now, as defined in Lemma l, letx′2, x′4, x′5 and b be points such that
x′2, x3, x′4, x′5 form the corners of a square andx′4, x′5, b form the corners of an equilateral
triangle so thatb co-incides witho. Note that6 bx3x′2 = 75◦. Let C be a circular arc of
radius|x3b| centered atb, and definelU, lL, l ′,C′, andδ as in Lemma 1. There are a number
of situations to consider.

(a) x2 lies strictly inside the curveC andx2bdoes not intersectx4x5. Letube the intersection
point of x2x3 and a line passing throughx5 ando (figure 2). Clearly|x3o| > |uo|
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Figure 2. The positioning ofx2.

so LG = |x2x3| + |Q(x3, x4, x5)| > |x2x3| + |uo| = (|x2x3| + |ux5|) + |x5o| ≥
|Q(x2, x3, x5)| + |x4x5|. ThusG is not minimal as{Q(x2, x3, x5), x4x5} is shorter.
Note thatQ(x2, x3, x5) may or may not be full.

(b) x2 lies strictly inside the curveC and does intersectx4x5. In this case|Q(x3, x4, x5)| =
|x3o| > |x2o| = |Q(x2, x4, x5)|. ThereforeQ(x3, x4, x5) may be replaced by the
shorterQ(x2, x4, x5) which again may or may not be full.

(c) x2 lies on or outside the curveC. Note thatx2 must lie strictly below the linelL else
θ ≥ 75◦. If x5 lies inside the curveC′ thenx2x3 may be replaced by the shorterx2x5.
This will be apparent asx5 will strictly be contained in the circular arc of radiusx2x3

centered atx2.

Now supposex5 does not lie insideC′. If δ < 0 then by Lemma 1,x4 must lie strictly
belowlU.

ConsiderG′ = {x4x5, Q(x2, x3, x4)} (figure 3a). Lets′ be the Steiner point ofQ(x2, x3,

x4), 0 < β = 6 x′2, x2, x3, β < γ ′′ = 6 x′2, x2, s′ and assumeρ ′LG/LG′ ≤ 1. Move x2

toward x′2 such thatx′2x2 decreases at a rate of−1. The LG = −cosβ < −cosγ ′′ =
L̇G′ < 0 so L̇G/L̇G′ > 1 andDρ ′(v) < 0. Thus the ratioρ ′ will decrease. Similarly if
α = 6 s, x5, x4 then movex5 towards so thatL̇G = −1< − cosα = L̇ ′G < 0 to again give
L̇G/L̇G′ > 1 andDρ ′(v) < 0. Note too that asb is fixed,o will move alongl ′ towardx3

andδ will increase. Whenx2 = x′2 andδ = 0, x3 andx2 lie on lU andlL respectively and
x4 andx5 both lie betweenlU andlL. Note here thatx5 may or may not now lie insideC′′.

Letw2, w3, x4, x5 be the four points of a rectangle such thatw3 lies onl ′. (figure 3b) and
note that asx4 lies strictly belowlU, w3 6= x3.

Move x3 towardw3 along l ′ and x2 towardw2 at such rates so thatx2x3 is always
perpendicular tolU andlL. Let∅ = 6 w3, x3, s′ andω = 6 w2, x2, x3. Then L̇G = −1−
cos 75◦ − sin 75◦ · cotω, andL̇G′ = −cos∅− sin 75◦ · cosecω · cos(ω −∅+ 15◦).

Considerf (ω,∅) = −L̇G + LG′ . Then

f (ω,∅) = 1+ cos 75◦ − cos∅+ sin 75◦ ·
{
(cosω · cos(ω −∅+ 15◦))

sinω

}
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(a)

(b)

Figure 3. Regular point movement toward rectangular configuration.

and

δ f (ω,∅)/δω = −sin 75◦ ·
{
(1− cos(15◦ −∅))

sin2ω

}
≤ 0

for 0< ω ≤ 90◦.
Thus f (ω,∅) ≥ f (90,∅) = 1+cos 75◦ −cos∅−sin 75◦ ·cos(105◦ −∅). The unique

minimum to this equation, for 0◦ < ∅ < 60◦ occurs when∅ = 51.206..◦

So f (ω,∅) ≥ f (90◦, 51.206..) = 0.0617339... > 0 giving L̇G/L̇G′ > 1 and a decreas-
ing ρ ′. Whenw2 = x2 andw3 = x3, LG andLG′ may be calculated directly and both have
the same value. Therefore a contradiction arises asLG cannot be shorter thanLG′ .

If δ ≥ 0 thenx5 must lie abovelL elseδ < 0 or x5 lies insideC′. ConsiderG′ =
{x4x5, Q(x2, x3, x5)} and assumeρ ′ = LG/LG′ ≤ 1. Lets′ be the Steiner point ofQ(x2, x3,
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(a)

(b)

Figure 4. Defined collection of 6 T1 trees.

x5). It is now possible to follow a similar procedure as was used in the previous situation
whenδ < 0 to arrive at the same contradiction thatLG cannot be shorter thanLG′ . 2

Definition 1. SupposeX5 = {x1, x2, x3, x4, x5}, a collection of 5 Euclidean plane points,
is interconnected by a T1 treeG consisting of two fullQ-componentsQ(x1, x2, x3) and
Q(x3, x4, x5) with Steiner pointss1 and s2 respectively (figure 4a). Then defineM =
{A, B,C, D, E, F} to be the set of six T1 trees (figure 4b) as follows.

A = {x1x2, Q(x2, x3, x4), x4x5}
B = {x1x2, Q(x2, x3, x5), x4x5}
C = {x1x2, Q(x1, x3, x4), x4x5}
D = {x1x2, Q(x1, x3, x5), x4x5}
E = {Q(x1, x2, x5), Q(x3, x4, x5)}
F = {Q(x1, x2, x3), Q(x1, x4, x5)}

Definition 2. SupposeX5 = {x1, x2, x3, x4, x5}, a collection of five Euclidean plane points,
is interconnected by a T1 treeG consisting of two fullQ-componentsQ(x1, x2, x3) and
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Q(x3, x4, x5), with Steiner pointsS1 andS2 respectively. Define1 to be the configuration
space consisting of the six non negative edge lengths ofG. i.e.1 = {s1x1, s1x2, s1x3, s2x3,

s2x4, s2x5} such that the sum of the lengths is equal to 1 and the angle betweens1x3 and
s2x3 is fixed and is at most 75◦.

Lemma 3. The length of any T1 tree with respect to1 is a convex function.

Proof: The general result is proved by Du et al. (1991). (As all the angles and the topology
of G are fixed, a point of1 ⊂ R5 will determine the configuration of the regular points.
The length of any component of a T1 network interconnectingG can then be written as a
vector sum and its length shown to be a convex function.) 2

Lemma 4. Suppose X5 = {x1, x2, x3, x4, x5} is a collection of five Euclidean plane points
lying in some configuration such that
(1) The T1 tree G(with length LG) interconnecting X5 consisting of two full Q-components

Q(x1, x2, x3) and Q(x3, x4, x5) exists and is minimal;
(2) The angleθ between the two edges s1x3 and s2x3 is strictly less than75◦.

Suppose the maximum value of LG/LG′ for all G ′ ∈ M at the configuration isρ∗. Then
there exists another configuration of X5 such that G,consisting of the two full Q-components
Q(x1, x2, x3) and Q(x3, x4, x5), exists, θ = 75◦, and LG/LG′ ≤ ρ∗.

Proof: As G is assumed to be minimal at the initial configuration,ρ∗ ≤ 1.
Note that if a linex3x1 intersectsx5s2 thenG cannot be minimal asQ(x1, x2, x3) may

be replaced by a shorterQ(x1, x2, x5) giving LG/LG′ > 1 with G′ = E ∈ M . Similarly if
a linex3x5 intersectss1x1 thenG cannot be minimal asQ(x3, x4, x5)may be replaced by a
shorterQ(x1, x4, x5) giving LG/LG′ > 1 with G′ = F ∈ M .

Thus supposex3x1 does not intersectx5s2 andx3x5 does not intersects1x1. LG remains
constant ifQ(x1, x2, x3) is pivoted aboutx3 to increaseθ and LG′ does not decrease for
any G′ ∈ M . ThusLG/LG′ will decrease for anyG′ ∈ M and soLG/LG′ ≤ ρ∗ for any
G′ ∈ M . 2

Remark. If LG′ remains constant for someG′ ∈ M whenθ is increased, thenLG/LG′ < 1.
This can be seen for eachG′ ∈ M . For example, supposeG′ = A ∈ M . If Q(x2, x3, x4)

is full then LG′ must strictly increase. IfQ(x2, x3, x4) = {x2x3, x3x4} then LG′ remains
constant. However in this situation it is obvious thatLG/LG′ < 1. Note thatQ(x2, x3, x4)

cannot be{x2x3, x2x4} or {x3x4, x2x4}. Thus, by similar consideration of allG′ ∈ M , it will
be clear that whenθ = 75◦, LG/LG′ < 1 for all G′ ∈ M .

Proof of Theorem 1: Consider two edges ofT meeting at a common vertex with the angle
between them strictly less than 75◦. By definition each edge must either be a spanning edge
or belong to some fullQ-component. Let the two components be denoted byG. The
proof will aim to show that a shorter network may be obtained by removing one or both
components ofG and by replacing them with different components of shorter sum length.
There are 3 cases to consider. 2
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First Case. Gconsists of two spanning edges. Clearly the edges may be replaced by a full
Q-component of strictly shorter length.

Second Case. Gconsists of one spanning edge and one fullQ-component. By Lemma 2
there exist components of strictly shorter sum length which may be used as replacements.

Third Case. Gconsists of two fullQ-components. In this case, the proof follows the ideas
of Du and Hwang (1992).

Without loss of generality supposeG interconnectsX5 = {x1, x2, x3, x4, x5} andG consists
of the twoQ-componentsQ(x1, x2, x3) andQ(x3, x4, x5)with the angleθ betweens1x3 and
s2x3 (s1, s2 the Steiner points ofQ(x1, x2, x3) andQ(x3, x4, x5) respectively) atx3 strictly
less than 75◦. Note that asT is minimalG must also be minimal. It is now only necessary to
restrict attention toG. ConsiderG′ ∈M . ThenLG/LG′ ≤ 1 and by the Remark following
Lemma 4 a minimum value ofLG/LG′ strictly less than 1 for allG′ ∈ M will occur for
some configuration ofX5 whenθ = 75◦.

Consider the configuration space1 as defined in Definition 2 and setθ = 75◦. Then there
exists some interior pointpo ∈ 1 such thatG is a minimal T1 tree with|x3s1| ≥ |s2x3| > 0
(figure 5b).

(a)

(b)

Figure 5. a) Square configuration of regular points, b)|x3s1| ≥ |s2x3| > 0.
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Let p1 correspond to a configuration ofX5 such that

|s2x4| = |s2x5| = 0

|s2x3|
|x3x4| =

1(
1+ 2√

3
(
√

2+ sin 15◦)
) ,

|s1x2|
|x3x4| =

(2 sin 15◦)(√
3
(
1+ 2√

3
(
√

2+ sin 15◦)
)) ,

and

|s1x1|
|x3x4| =

|s1x3|
|x3x4| =

√
2(√

3
(
1+ 2√

3
(
√

2 sin 15◦)
))

i.e. whens2 = x4 = x5 andx1, x2, x3, andx4(=x5) lie as the corners of a square (figure 5a).
Note that for anyG′ ∈ M, LG/LG′ = 1 at p1.

Now consider the path(1− λ)p1+ λpo ∈ 1 for λ ≥ 0. Note that since|s2x4| =
|s2x5| = 0 at p1 but |s2x4| > 0 and|s2x5| > 0 at po, some edge ofG must decrease at a
constant rate asλ increases. Letr = |s1x3|/|s2x3|. Thenr (λ) is an increasing function. (At
p1, r = sin 45◦/sin 60◦ < 1, and atpo, r ≥ 1). Thus there will exist someλ > 1 such that
one of the following occurs.

(a) G intersects itself.
(b) |s1x3| · 2 cos 75◦ ≤ |s2x3| ≤ |s1x3| and at least oneQ-component ofG is not full.
(c) |s2x3| = |s1x3| · 2 cos 75◦ and bothQ-components ofG are full.
(d) |s1s3| · 2 cos 75◦ > |s2x3|

Let p′1 ∈ 1 correspond to the smallestλ > 1 for which one of the above occurs. Then to
prove Theorem 1 it is necessary to find a T1 treeG′ 6= G such thatLG/LG′ ≥ 1 at bothp1

and p′1 ∈ 1. It will then follow that LG/LG′ ≥ 1 at po by the convexity ofLG′ and hence
a contradiction thatG is minimal.

Each situation is considered separately.

(a) G intersects itself. There are two possibilities.

If s2x5 intersectss1x1 (figure 6a) then chooseG′ = {Q(x1, x2, x5), Q(x3, x4, x5)} =
E ∈ M . Since|Q(x1, x2, x5)| ≤ |Q(x1, x2, x3)| at p′1, LG/LG′ ≥ 1, at bothp1

and p′1. ThusLG/LG′ ≥ 1 at po by the convexity ofG′ and so contradicting the
minimality of G.

If s1x1 intersectss2x5 (figure 6b) then chooseG′ = {Q(x1, x2, x3), Q(x1, x4, x5)} =
F ∈ M and a similar argument follows.

(b) |s1x3| · 2 cos 75◦ ≤ |s2x3| ≤ |s1x3| and at least oneQ-component ofG is not full. In
this casep′1 lies on the boundary of1. AssumeG does not intersect itself. Note that
bothx4s2 andx5x2 have non zero length atp′1, and|s1x3| ≥ |x3s2| > 0 also atp′1. Thus
only x1s1 or x2s1 can have zero length atp′1.
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(a) (b)

Figure 6. a)s2x5 intersectings1x1, b) s1x1 intersectings2x5.

The problem can now be considered as a geometric problem. Letx′4, x′5 be points
such thats1, x3, x′4, x′5 form the corners of a square. Also leto′ be the third point of
the equilateral triangle1o′s1x3,C′ be the circular arc of radius|s1x3| at S1, o be the
third point of the equilateral triangle1ox4x5,q be a line passing througho′ and the
midpoint ofx′4x′5,q

′ be a line passing througho′ andS1, lU be a line passing throughx3

andx′4, lL. be a line passing throughs1x′5, and defineδ be the angle measured clockwise
at x4 from a line parallel withx′4x′5 to x4x5. Note that if|s2x3| = |s1x3| · 2 cos 75◦ then
s2 will lie on C′ (figure 7).

There are two situations to consider.

(b.1) If x5 lies insideC′ then |s1x5| ≤ |s1x3| and |Q(x1, x2, x5)| ≤ |Q(x1, x2, x3)|.
ThusG′ can be chosen to beE ∈ M to giveLG/LG′ ≥ 1 and a contradiction that
G is minimal atpo.

(b.2) If x5 lies outsideC′ then there are a number of situations to consider.

Figure 7. The location ofx5.
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(i) x4 lies belowlU andx5 lies abovelL. If |x1s1| = 0 andδ ≤ 0 then choose
G′ to be{x1x2, Q(x1, x3, x4), x4x5} = C ∈ M . If x4 lies strictly belowlU
then follow similarly the procedure used in Lemma 2 to show that|s1x3| +
|Q(x3, x4, x5)| ≥ |x4x5| + |Q(x1, x3, x4)| to give the contradiction. Ifx4

lies lU then it may be shown again that|s1x3| + |Q(x3, x4, x5)| ≥ |x4x5| +
|Q(x1, x3, x4)| by decreasing the edgess1x3 = x1x3 ats1 = x1 or decreasing
s2x5 at x5 until x1, x3, x4, x5 lie as the corners of a rectangle from which
LG = LG′ to give the contradiction of the minimality ofG.

Similarly if

|x2s1| =0 andδ≤ 0 then chooseG′ to be{x1x2, Q(x2, x3, x4), x4x5}= A∈M .
|x1s1| = 0 andδ > 0 then chooseG′ to be{x1, x2, Q(x1, x3, x5), x4x5} =

D ∈ M .
|x2s1| =0 andδ >0 then chooseG′ to be{x1x2, Q(x2, x3, x5), x4x5}= B∈M .

(ii) x4 lies abovelU andx5 lies abovelL. In this situationδ > 0 so if |x1s1| = 0
chooseG′ to be D ∈ M , and if |x2s1| = 0 chooseG′ to be B ∈ M and
proceed as in (i).

(iii) x4 lies belowlU andx5 lies belowlL. If δ ≤ 0 and|x1s1| = 0 chooseG′ to
beC ∈ M , and if δ ≤ 0 and|x2s1| = 0 chooseG′ to be A ∈ M . Move x5

towards2 to decreaseLG/LG′ until δ = 0. If x5 lies abovelL whenδ = 0
then proceed as in Lemma 2 to obtain the contradiction. Ifx5 lies belowlL
whenδ = 0 then it is not possible to proceed as in Lemma 2. It will therefore
be necessary to re-examine the problem. Note here thato lies belowq. This
situation will now be examined in (iv).

If δ > 0 thenomust lie belowq. This situation will also now be examined
in (iv).

(iv) x4 lies abovelU and x5 lies belowlL. In this situationo lies belowq so
|x3o| ≥ |s1o|.

First suppose|x1s1| = 0, (figure 8a). Ifs1o intersectsx4x5 then|Q(x1, x4,

x5)| ≤ |Q(x3, x4, x5)| so chooseG′ to beF ∈ M . If s1o does not intersect
x4x5 then note thato must also lie belowlL. Letu be the point of intersection
of s1x3 and a line passing throughox5. Then clearly|x3o| > |uo| ≥ |x1x5|+

(a) (b)

Figure 8. a) |x1s1| = 0, b) |x2s1| = 0.
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Figure 9. x1o does not intersectx4x5.

|x5o|. ThusQ(x3, x4, x5)may again be replaced by the shorterQ(x1, x4, x5)

andG′ may be chosen to beF ∈ M .

Next, suppose|x2s1| = 0, (figure 8b). Ifx1o intersectsx4x5 then|Q(x1, x4, x5)| ≤
|s1o| ≤ |Q(x3, x4, x5)| by geometric considerations soG′ may again be chosen to be
F ∈ M .

Now supposex1o does not intersectx4x5. Defined to be the distance froms1 to the
intersection point betweenq′ and a line passing throughs2 andx5 when|x3s2| = |x3s1|,
(figure 9).

If |x1s1| ≥ d = (cos 52.5◦/cos 67.5◦) · |x3s1| = (1.5907703...). |x3s1| (i.e. in
this situationx5 must lie aboveq′.), then the shortest distance betweenx5 and x1s1

is at mostd · tan 30◦.|x3s1|/(tan 30◦ + 1) = (0.5822623...). |x3s1| < |x3s1|. Thus
|Q(x1, x2, x3)| ≥ |Q(x1, x2, x5)| soG′ may be chosen to beE ∈ M .

Now supposex1s1 < d. If x5 lies belowq′ theno must also lie belowq′. Let u
be the point of intersection ofx3s1 and a line througho andx5. Then clearly|x3o| >
|uo| ≥ |s1x5| + |x5o| ≥ |x1x5| + |x5o|. ThusQ(x3, x4, x5) may again be replaced by
the shorterQ(x1, x4, x5) andG′ may be chosen to beF ∈ M .

If x5 lies aboveq′ then there are two situations.

If |x1x5| ≤ |x3s1| then replaceQ(x1, x2, x3) by the shorterQ(x1, x2, x5) and choose
G′ to beE ∈ M .

If |x1x5| > |x3s1| then|x1s1| can be at most(d − |x3s1|) = (0.5907703...).|x3s1|.
Note that the angle betweenx1x5 andq′ at x1 is at most the angle thatx′5x1 is with
q′ and is less than 90◦, (figure 10). Letu′ be the intersection point betweenx1s1 and
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Figure 10. The angle betweenx1x5 andq′ at x1.

a line passing througho andx5. Then the angle betweenu′o andq′ is also less than
90◦ and|x3o| > |u′o| = |u′x5| + |x5o| > |x1x5| + |x5o|. ThereforeQ(x3, x4, x5)

may be replaced by the shorterQ(x1, x4, x5) andG′ may be chosen to beF ∈ M .
Similarly if u′ is the intersection point ofx3s1 and a line passing througho andx5

then|x3o| > |u′o| ≥ |s1x5| + |x5o| ≥ |x1x5| + |x5o| andG′ may be chosen to be
F ∈ M again.

(c) |s2x3| = |s1x3| · 2 cos 75◦ and bothQ-components ofG are full.

If x5 lies insideC′ then|Q(x1, x2, x5)| ≤ |Q(x1, x2, x3)| so G′ may be chosen to be
E ∈ M .

If x5 lies outsideC′ then ass2 lies onC′, x5 lies belowlL and|s2x2| ≥
√

2 · |s1x3|. Let
w be the intersection point ofq and a line passing throughx3 ands2, (figure 7). Then
|x3o| = |Q(x3, x4, x5)| = |s2x3| + |s2x4| + |s2x5| > (2 cos 75◦ + √2) · |s1x3| >
|x3w|. Thuso must lie belowq. The proof may now follow similarly to that of (b.iv).

(d) |s1x3| · 2 cos 75◦ > |s2x3|.
If |s1x3| · 2 cos 75◦ < |s2x3| at p0 thenp′1 can always be chosen to satisfy one of the

conditions (a), (b), or (c) for someλ > 1. If at po, |s1x3| ·2 cos 75◦ ≥ |s2x3|, then it only
needs to be shown thatG cannot be minimal atp0 for θ ≤ 75◦. Note that|s1x1| > 0.
Thus if x5 lies in or onC′ thenLG > LG′ for G′ = E ∈ M . If x5 lies outsideC′ then
sinces2 lies insideC′, x5 must lie belowlL. Note also that as it only needs to be shown
thatG is not minimal atpo there is now not the restriction of examining networks only
from M .

Thus it will be apparent that|x1x5| is strictly less than either|s1x1| or |s2x5|. If the
former occurs thenG is longer than{x2x3, Q(x3, x4, x5), x1x5}, and if the latter occurs
thenG is longer than{x1x5, Q(x1, x2x3), x3x4}.
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This completes the proof of the third case.
Thus since(T/G)∪G′ is a T1 tree andLG′ < LG, |(T/G)∪G′| < |T | and soT cannot

be minimal. 2

Remark. Note that as the proof was by contradiction method it is clear that the result is
best possible. i.e. a T1 network with any angle less than 75◦ cannot be minimal.
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